Skip to main content

Advertisement

Log in

p53 expression and resistance against paclitaxel in patients with metastatic breast cancer

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Paclitaxel is an important agent in the pharmacological treatment of metastatic breast cancer. Despite its efficacy in selected patients, the majority of patients have a resistance against paclitaxel. The aim of this study was to identify the responding patients and hence prevent the other patients from ineffective treatment. Identifying these patients could spare them an ineffective treatment and could in turn characterize a subgroup of patients with a higher response rate.

Material and methods

Thirty-three patients with metastatic breast cancer received paclitaxel 175 mg/m2 either as first- (15 patients) or as second-line (18 patients) treatment. Immunohistochemistry was performed on the blocks of the primary tumors with monoclonal antibodies against p53, HER-2/neu, P-glycoprotein, Glutathione-S-Transferase-π, and β-tubulin II. The expression of those factors was then correlated with the objective response to paclitaxel.

Results

Ten of 33 patients had an objective response to treatment. A significant correlation with the objective response was found for the expression of p53. None of the tumors with p53 expression (n=11) responded to paclitaxel. In contrast, 10 of the 22 patients without p53 expression showed an objective response (P=0.013). Expression of HER-2/neu, P-glycoprotein, Glutathione-S-Transferase-π, and β-tubulin II did not show a correlation with the response to paclitaxel.

Conclusion

The immunohistochemical detection of p53 characterizes patients with metastatic breast cancer unlikely to respond to paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Arrick BA, Nathan CF (1984) Glutathione metabolism as a determinant of therapeutic efficacy: a review. Cancer Res 44:4224–4232

    CAS  PubMed  Google Scholar 

  2. Baselga J, Seidman AD, Rosen PP, Norton L (1997) HER2 overexpression and paclitaxel sensitivity in breast cancer: therapeutic implications. Oncology 11[Suppl 2]:43–48

  3. Bishop JF, Dewar J, Toner G, Smith J, Tattersall MH, Olver I, Ackland S, Kennedy I, Goldstein D, Gurney H, Walpole E, Levi J, Stephenson J, Canetta R (1999) Initial paclitaxel improves outcome compared with CMFP combination chemotherapy as front-line therapy in untreated metastatic breast cancer. JCO 17:2355–2364

    CAS  Google Scholar 

  4. Bradley G, Naik M, Ling V (1989) P-Glykoprotein expression in multidrug resistant human ovarian carcinoma cell lines. Cancer Res 49:2790–2796

    CAS  PubMed  Google Scholar 

  5. Cassinelli G, Supino R, Perego P, Polizzi D, Lanzi C, Pratesi G, Zunino F (2001) A role for loss of p53 function in sensitivity of ovarian carcinoma cells to taxanes. Int J Cancer 92:738–747

    CAS  PubMed  Google Scholar 

  6. Chadderton A, Villeneuve DJ, Gluck S, Kirwan-Rhude AF, Gannon BR, Blais DE, Parissenti AM (2000) Role of specific apoptotic pathways in the restoration of paclitaxel-induced apoptosis by valspodar in doxorubicin-resistant MCF-7 breast cancer cells. Breast Cancer Res Treat 59:231–244

    CAS  PubMed  Google Scholar 

  7. Das GC, Holiday D, Gallardo R, Haas C (2001) Taxol-induced cell cycle arrest and apoptosis: dose response relationship in lung cancer cells of different wild-type p53 status under isogenic condition. Cancer Lett 165:147–153

    Article  CAS  PubMed  Google Scholar 

  8. Derry WB, Wilson L, Jordan MA (1995) Substoichiometric binding of taxol suppresses microtubule dynamics. Biochem 34:2203–2211

    CAS  PubMed  Google Scholar 

  9. Dirven HA, van Ommen B, van Bladeren PJ (1994) Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res 54:6215–6220

    CAS  PubMed  Google Scholar 

  10. Eck L, Pavich D, Fruehauf JP (1993) MDR-1 expression by human ovarian tumors is associated with taxol resistance. Proc Am Assoc Cancer Res 34:232

    Google Scholar 

  11. Gan YB, Balturshot G, Millenbaughm NJ, Chen CT, Kalns JE, Lim C, Wientjes MG, Au JL (1995) P-Glykoproteinexpression in human tumors and its correlation with chemosensitivity to taxol and cell mobility. Proc Am Assoc Cancer Res 36:334

    Google Scholar 

  12. Gan YB, Wientjes MG, Au JL (1998) Relationship between paclitaxel activity and pathobiology of human solid tumors. Clin Cancer Res 4:2949–2955

    CAS  PubMed  Google Scholar 

  13. Giannakakou P, Poy G, Zhan Z, Knutsen T, Blagosklonny MV, Fojo T (2000) Paclitaxel selects for mutant or pseudo-null p53 in drug resistance associated with tubulin mutations in human cancer. Oncogene 19:3078–3085

    Article  CAS  PubMed  Google Scholar 

  14. Gurnani M, Lipari P, Dell J, Shi B, Nielsen LL (1999) Adenovirus-mediated p53 gene therapy has greater efficacy when combined with chemotherapy against human head and neck, ovarian, prostate and breast cancer. Cancer Chemother Pharmacol 44:143–151

    Article  CAS  PubMed  Google Scholar 

  15. Haber M, Burkhart CA, Regl DL, Madafiglio J, Norris MD, Horwitz SB (1995) Altered expression of M beta 2, the class II beta-tubulin isotype, in an murine J774.2 cell line with a high level of taxol resistance. J Biol Chem 270:31269–31275

    Article  CAS  PubMed  Google Scholar 

  16. Kandioler-Eckersberger D, Ludwig C, Rudas M, Kappel S, Janschek E, Wenzel C, Schlagbauer-Wadl H, Mittlboeck M, Gnant M, Steger G, Jakesz R (2000) TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res 6:50–56

    CAS  PubMed  Google Scholar 

  17. Lanni JS, Lowe SW, Licitra EJ, Liu JO, Jacks T (1997) p-53 independent apoptosis induced by paclitaxel through an indirect mechanism. Proc Natl Acad Sci USA 94:9679–9683

    Article  CAS  PubMed  Google Scholar 

  18. Linn SC, Pinedo HM, van Ark-Otte J, van der Valk P, Hoekman K, Honkoop AH, Vermorken J, Giaccone G (1997) Expression of drug resistance proteins in breast cancer, in relation to chemotherapy. Int J Cancer 71:787–795

    Article  CAS  PubMed  Google Scholar 

  19. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266:807–810

    CAS  PubMed  Google Scholar 

  20. Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    PubMed  Google Scholar 

  21. Mallarino MC, Duran GE, Dumontet CM, Sikic BI (1995). Mechanisms of resistance in a human sarcoma cell line continuously selected with paclitaxel (Taxol, TAX) and SDZ PSC 833. Proc Am Assoc Cancer Res 36:320

    Google Scholar 

  22. Masanek U, Stammler G, Volm M (1997) Messenger RNA expression of resistance proteins and related factors in human ovarian carcinoma cell lines resistant to doxorubicin, taxol and cisplatin. Anti-Cancer Drugs 8:189–198

    CAS  Google Scholar 

  23. Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R, Parker RJ, Fruehauf JP (1998) Levels of multidrug resistance (MDR-1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 4:389–398

    CAS  PubMed  Google Scholar 

  24. Meijer C, Mulder NH, De Vries EGE (1990) The role of detoxifying systems in resistance of tumor cells to cisplatin and adriamycin. Cancer Treat Rev 7:389–407

    Google Scholar 

  25. Michael M, Bishop JF, Levi JA, Bell DR, Zalcberg JR, Friedlander ML, Olver IN, Smith JG, Toner GC (1997) Australian multicenter phase II trial of paclitaxel in women with metastatic breast cancer and prior chemotherapy. Med J Austral 10:520–523

    Google Scholar 

  26. Milross CG, Mason K, Hunter NR, Chung VK, Peters LJ, Milas L (1996) Relationship of mitotic arrest and apoptosis to antitumor effect of paclitaxel. J Natl Cancer Inst 88:1308–1314

    CAS  PubMed  Google Scholar 

  27. Nicoletti MI, Valoti G, Giannakakou P, Zhan Z, Kim JH, Lucchini V, Landoni F, Mayo JG, Giavazzi R, Fojo T (2001) Expression of beta-tubulin isotypes in human ovarian carcinoma xenografts and in a sub-panel of human cancer cell lines from the NCI-Anticancer Drug Screen: correlation with sensitivity to microtubule active agents. Clin Cancer Res 7:2912–2922

    CAS  PubMed  Google Scholar 

  28. Nielsen LL, Lipari P, Dell J, Gurnani M, Hajian G (1998) Adenovirus-mediated p53 gene therapy and paclitaxel have synergistic efficacy in models of human head and neck, ovarian, prostate, and breast cancer. Clin Cancer Res 4:835–846

    CAS  PubMed  Google Scholar 

  29. Oldham EA, Li C, Ke S, Wallace S, Huang P (2000) Comparison of action of paclitaxel and poly(L-glutamic acid)-paclitaxel conjugate in human breast cancer cells. Int J Oncol 16:125–132

    CAS  PubMed  Google Scholar 

  30. Orr MS, O´Connor PM, Kohn KW (2000) Effects of c-erbB2 overexpression on the drug sensitivities of normal human mammary epithelial cells. J Natl Cancer Inst 92:987–994

    Article  CAS  PubMed  Google Scholar 

  31. Rouby S, Thomas A, Costin D, Rosenberg CR, Potmesil M (1993) p53 mutation in B-cell chronic lymphocytic leukemias associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 82:3452–3459

    PubMed  Google Scholar 

  32. Schiff PB, Fant J, Horwitz SB (1979). Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    CAS  PubMed  Google Scholar 

  33. Shiga H, Heath EI, Rasmussen AA, Trock B, Johnston PG, Forastiere AA, Langmacher M, Baylor A, Lee M, Cullen KJ (1999) Prognostic value ofp53, glutathione-S-transferase π, and thymidylate synthase for neoadjuvant cisplatin-based chemotherapy in head and neck cancer. Clin Cancer Res 5:4097–4104

    CAS  PubMed  Google Scholar 

  34. Shimizu C, Fukutomi T, Tsuda H, Akashi-Tanaka S, Watanabe T, Nanasawa T, Sugihara K (2000) c-erbB-2 protein overexpression and p53 immunoreaction in primary and recurrent breast cancer tissues. J Surg Oncol 73:17–20

    Article  CAS  PubMed  Google Scholar 

  35. Soong R, Robbins PD, Dix BR, Grieu F, Lim B, Knowles S, Williams KE, Turbett GR, House AK, Iacopetta BJ (1996) Concordance between p53 protein overexpression and gene mutation in a large series of common human carcinomas. Hum Pathol 27:1050–1055

    CAS  PubMed  Google Scholar 

  36. Ueno NT, Bartholomeusz C, Herrmann JL, Estrov Z, Shao R, Andreeff M, Price J, Paul RW, Anklesaria P, Yu D, Hung MC (2000) E1A-mediated paclitaxel sensitisation in HER-2/neu-overexpressing ovarian cancer SKOV3.ip1 through apoptosis involving the caspase-3 pathway. Clin Cancer Res 6:250–259

    CAS  PubMed  Google Scholar 

  37. van Ark-Otte J, Samelis G, Rubio G, Lopez Saez JB, Pinedo HM, Giaccone G (1998) Effects of tubulin-inhibiting agents in human lung and breast cancer cell lines with different multidrug resistance phenotypes. Oncol Rep 5:249–255

    PubMed  Google Scholar 

  38. van Poznak C, Tan L, Panageas KS, Arroyo CD, Hudis C, Norton L, Seidmann AD (2002) Assessment of molecular markers of clinical sensitivity to single-agent taxane therapy for metastatic breast cancer. JCO 20:2319–2326

    Google Scholar 

  39. Wahl AF, Donaldson KL, Fairchild C, Lee FY, Foster SA, Demers GW, Galloway DA (1996) Loss of normal p53 function confers sensitisation to taxol by increasing G2/M arrest and apoptosis. Nature Med 2:72–79

    CAS  PubMed  Google Scholar 

  40. Woods CM, Zhu J, McQueney PA, Bollag D, Lazarides E (1995) Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Molec Med 1:506–526

    CAS  Google Scholar 

  41. Yamamoto N, Watanabe T, Katsumata N, Omuro Y, Ando M, Fukuda H, Tokue Y, Narabayashi M, Adachi I, Takashima S (1998) Construction and validation of a practical prognostic index for patients with metastatic breast cancer. J Clin Oncol 16:2401–2408

    CAS  PubMed  Google Scholar 

  42. Yang X, Uziely B, Groshen S, Lukas J, Israel V, Russell C, Dunnington G, Formenti S, Muggia F, Press MF (1999) MDR1 gene expression in primary and advanced breast cancer. Lab Invest 79:271–280

    CAS  PubMed  Google Scholar 

  43. Yu D, Liu B, Tan M, Li J, Wang SS, Hung MC (1996) Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to taxol via mdr-1-independent mechanisms. Oncogene 13:1359–1365

    CAS  PubMed  Google Scholar 

  44. Zhang L, Lau YK, Xia W, Hortobagyi GN, Hung MC (1999) Tyrosise kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitises these cells to the inhibitory effect of paclitaxel. Clin Cancer Res 5:343–353

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schmidt.

Additional information

This study was supported in part by a grant from Bristol Myers Squibb. The results were partly presented at the annual meeting of the German Society for Senology in Berlin 2001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M., Bachhuber, A., Victor, A. et al. p53 expression and resistance against paclitaxel in patients with metastatic breast cancer. J Cancer Res Clin Oncol 129, 295–302 (2003). https://doi.org/10.1007/s00432-003-0430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-003-0430-1

Keywords

Navigation