Skip to main content
Log in

Nomogram to predict feeding intolerance in critically ill children

  • RESEARCH
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Feed intolerance (FI) is significantly associated with poor prognosis in critically ill patients. This study aimed to understand the characteristics of children with FI and identify the factors predicting FI in critically ill children. This retrospective cohort study was conducted between January 2017 and June 2022 in the Pediatric Intensive Care Unit of a specialized children’s hospital. Eighteen factors, including age, body mass index for age z-score (BAZ) < -2, paediatric index of mortality (PIM)3 score, Glasgow coma scale score, mechanical ventilation (MV), enteral nutrition delay, vasoactive drugs, sedatives, sepsis, heart disease, neurological disease, hypokalemia, arterial PH < 7.35, arterial partial pressure of oxygen (PaO2), blood glucose, hemoglobin, total protein, and albumin, were retrieved to predict FI. The outcome was FI during PICU stay. During the study period, a total of 854 children were included, of which 215 children developed FI. Six predictors of FI were selected: PIM3 score, MV, sepsis, hypokalemia, albumin, and PaO2. Multivariate logistic regression analysis showed that higher PIM3 score, MV, sepsis, hypokalemia, and lower PaO2 were independent risk factors for FI, whereas higher albumin was an independent protective factor for FI. The C-index of the predictive nomogram of 0.943 was confirmed at internal validation to be 0.940, indicating a good predictive value of the model. Decision curve analysis shows good clinical applicability of the nomogram in predicting FI.

   Conclusion: The nomogram was verified to have a good prediction performance based on discrimination, calibration, and clinical decision analysis.

What is Known:

• Research has demonstrated that gastrointestinal (GI) dysfunction is not only a fundamental element of Multiple Organ Dysfunction Syndrome (MODS), but also the initiator of MODS.

• Previous study has demonstrated a significant association between FI and poor prognosis in critically ill patients.

What is New:

• We excluded patients with primary gastrointestinal tract disease from our study, and we observed an incidence of FI of 25.2% in the Pediatric Intensive Care Unit (PICU).

• Our study revealed that PIM3 score, MV, sepsis, hypokalemia, albumin, and PaO2 are significant predictors of FI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used during the current study are available from the corresponding author on reasonable request.

Abbreviations

BAZ:

Body mass index for age z-score

DCA:

Decision curve analysis

EN:

Enteral nutrition

FI:

Feed intolerance

GCS:

Glasgow coma scale

GI:

Gastrointestinal

ICU:

Intensive care unit

LASSO:

Least absolute shrinkage and selection operator

MODS:

Multiple Organ Dysfunction Syndrome

MV:

Mechanical ventilation

PaO2 :

Arterial partial pressure of oxygen

PICU:

Pediatric Intensive Care Unit

PIM:

Paediatric index of mortality

References

  1. Zeeshan A, Nairn Q, Jawwad M et al (2023) Impact of Nutrition Support Team in Achieving Target Calories in Children Admitted in Pediatric Intensive Care Unit. J Pediatr Gastroenterol Nutr 74:830–836. https://doi.org/10.1097/MPG.00000000000034381

    Article  Google Scholar 

  2. Leite P, de Lima F, de Oliveira IB et al (2013) Malnutrition may worsen the prognosis of critically ill children with hyperglycemia and hypoglycemia. J Parenter Enteral Nutr 37:335–341. https://doi.org/10.1177/01486071124581241

    Article  Google Scholar 

  3. Bechard J, Staffa J, Zurakowski D et al (2021) Time to achieve delivery of nutrition targets is associated with clinical outcomes in critically ill children. Am J Clin Nutr 114:1859–1867. https://doi.org/10.1093/ajcn/nqab2441

    Article  PubMed  Google Scholar 

  4. Eveleens D, Hulst M, de Koning E et al (2021) Achieving enteral nutrition during the acute phase in critically ill children: Associations with patient characteristics and clinical outcome. Clin Nutr 40:1911–1919. https://doi.org/10.1016/j.clnu.2020.09.0051

    Article  CAS  PubMed  Google Scholar 

  5. Cederholm T, Barazzoni R, Austin P et al (2017) ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr 36:49–64. https://doi.org/10.1016/j.clnu.2016.09.0041

    Article  CAS  PubMed  Google Scholar 

  6. Schörghuber M, Fruhwald S (2018) Effects of enteral nutrition on gastrointestinal function in patients who are critically ill. Lancet Gastroenterol Hepatol 34:281–287. https://doi.org/10.1016/S2468-1253(18)30036-0

    Article  Google Scholar 

  7. Quiroz-Olguín G, Gutiérrez-Salmeán G, Posadas-Calleja G et al (2021) The effect of enteral stimulation on the immune response of the intestinal mucosa and its application in nutritional support. Eur J Clin Nutr 75:1533–1539. https://doi.org/10.1038/s41430-021-00877-7

    Article  PubMed  Google Scholar 

  8. Kudsk A (2021) Current aspects of mucosal immunology and its influence by nutrition. Am J Surg 183:390–398. https://doi.org/10.1016/s0002-9610(02)00821-8

    Article  Google Scholar 

  9. Klingensmith J, Coopersmith M (2016) The Gut as the Motor of Multiple Organ Dysfunction in Critical Illness. Crit Care Clin 32:203–212. https://doi.org/10.1016/j.ccc.2015.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eveleens D, Joosten M, de Koning E et al (2020) Definitions, predictors and outcomes of feeding intolerance in critically ill children: A systematic review. Clin Nutr 39:685–693. https://doi.org/10.1016/j.clnu.2019.03.026

    Article  CAS  PubMed  Google Scholar 

  11. Mehta M, Bechard J, Cahill N et al (2012) Nutritional practices and their relationship to clinical outcomes in critically ill children– an international multicenter cohort study. Crit Care Med 40:2204–2211. https://doi.org/10.1097/CCM.0b013e31824e18a8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tume LN, Valla FV (2018) A review of feeding intolerance in critically ill children. Eur J Pediatr 177:1675–1683. https://doi.org/10.1007/s00431-018-3229-4

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez C, Lopez-Herce J, Moreno de Guerra M et al (2000) The use of transpyloric enteral nutrition in the critically ill child. J Intensive Care Med 15:247–254. https://doi.org/10.1177/088506660001500503

    Article  Google Scholar 

  14. Lu M, Jia S, Wang R et al (2022) Development of a prediction model for enteral feeding intolerance in intensive care unit patients: A prospective cohort study. World J Gastrointest Surg 14:1363–1374. https://doi.org/10.4240/wjgs.v14.i12.1363

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wolf E, Jeschke G, Rose K et al (1997) Enteral feeding intolerance: an indicator of sepsis-associated mortality in burned children. Arch Surg 132:1310–1313. https://doi.org/10.1001/archsurg.1997.01430360056010

    Article  CAS  PubMed  Google Scholar 

  16. Gungabison U, Hacquoil K, Bains C et al (2015) Prevalence, risk factors, clinical consequences, and treatment of enteral feed intolerance during critical illness. J Parenter Enteral Nutr 39:41–48. https://doi.org/10.1177/0148607114526450

    Article  Google Scholar 

  17. Mittal R, Coopersmith M (2014) Redefining the gut as the motor of critical illness. Trends Mol Med 20:214–223. https://doi.org/10.1016/j.molmed.2013.08.004

    Article  PubMed  Google Scholar 

  18. Straney L, Clements A, Parslow C et al (2013) Paediatric index of mortality 3: an updated model for predicting mortality in pediatric intensive care. Pediatr Crit Care Med 14:673–681. https://doi.org/10.1016/j.jpeds.2020.05.016

    Article  PubMed  Google Scholar 

  19. Jacobs A, Flechet M, Vanhorebeek I et al (2019) Performance of Pediatric Mortality Prediction Scores for PICU Mortality and 90-Day Mortality. Pediatr Crit Care Med 20:113–119. https://doi.org/10.1097/PCC.0000000000001764

    Article  PubMed  Google Scholar 

  20. Wong M, Hornik P, Mok H et al (2018) Performance of the Paediatric Index of Mortality 3 and Paediatric Logistic Organ Dysfunction 2 Scores in Critically III Children. Ann Acad Med Singap 47:285–90. https://doi.org/10.47102/annals-acadmedsg.V47N8p285

  21. Hsu HP, Shan YS, Hsieh YH et al (2006) Impact of etiologic factors and APACHE II and POSSUM scores in management and clinical outcome of acute intestinal ischemic disorders after surgical treatment. World J Surg 30:2152–2162. https://doi.org/10.1007/s00268-005-0716-3

    Article  PubMed  Google Scholar 

  22. Gajic O, Urrutia LE, Sewani H et al (2002) Acute abdomen in the medical intensive care unit. Crit Care Med 30:1187–1190. https://doi.org/10.1097/00003246-200206000-00001

    Article  PubMed  Google Scholar 

  23. Sun JK, Liu Y, Zou L et al (2020) Acute gastrointestinal injury in critically ill patients with COVID-19 in Wuhan, China. World J Gastroenterol 26:6087–97. https://doi.org/10.3748/wjg.v26.i39.6087

  24. Takedani Y, Nakamura T, Fukiwake N et al (2021) Clinical characteristics and factors related to antibiotic-associated diarrhea in elderly patients with pneumonia: a retrospective cohort study. BMC Geriatr 21:317. https://doi.org/10.1186/s12877-021-02267-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wennogle SA, Priestnall SL, Suárez-Bonnet A et al (2019) Lymphatic endothelial cell immunohistochemical markers for evaluation of the intestinal lymphatic vasculature in dogs with chronic inflammatory enteropathy. J Vet Intern Med 33:1669–1676. https://doi.org/10.1111/jvim.15545

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sestan M, Kifer N, Frkovic M et al (2021) Gastrointestinal involvement and its association with the risk for nephritis in IgA vasculitis. Ther Adv Musculoskelet Dis 13:1759720. https://doi.org/10.1177/1759720X211024828

    Article  Google Scholar 

  27. Nagamori T, Oka H, Koyano S et al (2014) Construction of a scoring system for predicting the risk of severe gastrointestinal involvement in Henoch-Schönlein Purpura. Springerplus 3:171. https://doi.org/10.1186/2193-1801-3-171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao X, Wang Y, Yang Y et al (2022) Association between preoperative nutritional status, inflammation, and intestinal permeability in elderly patients undergoing gastrectomy: a prospective cohort study. J Gastrointest Oncol 13:997–1006. https://doi.org/10.21037/jgo-22-367

  29. van der Hulst RR, von Meyenfeldt MF, van Kreel BK et al (1998) Gut permeability, intestinal morphology, and nutritional depletion. Nutrition 14:1–6. https://doi.org/10.1016/s0899-9007(97)00385-7

    Article  PubMed  Google Scholar 

  30. Steiner M, Bourges HR, Freedman LS et al (1968) Effect of starvation on the tissue composition of the small intestine in the rat. Am J Physiol 215:75–77. https://doi.org/10.1152/ajplegacy.1968.215.1.75

    Article  CAS  PubMed  Google Scholar 

  31. Sherman P, Forstner J, Roomi N et al (1985) Mucin depletion in the intestine of malnourished rats. Am J Physiol 248:G418–G423. https://doi.org/10.1152/ajpgi.1985.248.4.G418

    Article  CAS  PubMed  Google Scholar 

  32. Dive A, Moulart M, Jonard P et al (1994) Gastroduodenal motility in mechanically ventilated critically ill patients: a manometric study. Crit Care Med 22:441–447. https://doi.org/10.1097/00003246-199403000-00014

    Article  CAS  PubMed  Google Scholar 

  33. Ukleja A (2010) Altered GI motility in critically ill patients: current understanding of pathophysiology, clinical impact, and diagnostic approach. Nutr Clin Pract 25:16–25. https://doi.org/10.1177/0884533609357568

    Article  PubMed  Google Scholar 

  34. Garcia-Alvarez M, Marik P, Bellomo R (2014) Sepsis-associated hyperlactatemia. Crit Care 18(5):503. https://doi.org/10.1186/s13054-014-0503-3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haussner F, Chakraborty S, Halbgebauer R et al (2019) Challenge to the Intestinal Mucosa During Sepsis. Front Immunol 10:891. https://doi.org/10.3389/fimmu.2019.00891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heyland DK, Ortiz A, Stoppe C et al (2021) Incidence, Risk Factors, and Clinical Consequence of Enteral Feeding Intolerance in the Mechanically Ventilated Critically Ill: An Analysis of a Multicenter, Multiyear Database. Crit Care Med 49:49–59. https://doi.org/10.1097/CCM.0000000000004712

    Article  PubMed  Google Scholar 

  37. Clausen MJ, Poulsen H (2013) Sodium/potassium homeostasis in the cell. Met Ions Life Sci 12:41–67. https://doi.org/10.1007/978-94-007-5561-1_3

    Article  PubMed  Google Scholar 

  38. Sigrid AR, Sonali PB, Jegan G et al (2007) Na-K-ATPase regulates tight junction permeability through occluding phosphorylation in pancreatic epithelial cells. Am J Physiol Gastrointest Liver Physiol 292:G124-133. https://doi.org/10.1152/ajpgi.00297.2006

    Article  CAS  Google Scholar 

  39. Liu D, Lin Y, Gong N et al (2021) Degree and duration of hypokalemia associated with peritonitis in patients undergoing peritoneal dialysis. Int J Clin Pract 75:e14188. https://doi.org/10.1111/ijcp.14188

  40. Wu H, Huang R, Fan J et al (2022) Low potassium disrupt intestinal barrier and result in bacterial translocation. J Transl Med 20:309. https://doi.org/10.1186/s12967-022-03499-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szabo JS, Stonestreet BS, Oh W (1985) Effects of hypoxemia on gastrointestinal blood flow and gastric emptying in the newborn piglet. Pediatr Res 19:466–471. https://doi.org/10.1203/00006450-198505000-00012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate all of participants who enrolled in this study.

Funding

This work was funded by Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-040A) and Tianjin Natural Science Fund (21JCYBJC00890).

Author information

Authors and Affiliations

Authors

Contributions

Ying Lin designed the research.Ying Lin, Junhong Yang, and Xiaomin Wang conducted the research.Ying Lin and Junhong Yang provided data analysis.Ying Lin, Liping Zhang, Lijing Wang, Lingyan Li, and Yun Gou conducted data collection.Liping Zhang and Lijing Wang provided data interpretation.Ying Lin drafted the manuscript. Junhong Yang and Xiaomin Wang revised the manuscript. All authors contributed to writing and editing the final paper.

Corresponding author

Correspondence to Ying Lin.

Ethics declarations

Ethical approval

The study was conducted in accordance with the ethical principles laid down in the “Declaration of Helsinki”. It was approved by the hospital Ethics Committee (Ethics Committee of Tianjin Children’s Hospital, No.: L2023-005). Due to the retrospective nature of this study, the ethics committee was exempted from signing the subject informed consent form.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Peter de Winter

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Wang, X., Li, L. et al. Nomogram to predict feeding intolerance in critically ill children. Eur J Pediatr 182, 5293–5302 (2023). https://doi.org/10.1007/s00431-023-05205-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-023-05205-8

Keywords

Navigation