Skip to main content

Advertisement

Log in

Discrimination of blood metabolomics profiles in neonates with idiopathic polyhydramnios

  • RESEARCH
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

This study aimed to compare the blood metabolic status of neonates with idiopathic polyhydramnios (IPH) and those with normal amniotic fluid, and to explore the relationship between IPH and fetal health. Blood metabolites of 32 patients with IPH and 32 normal controls admitted to the Sixth Affiliated Hospital of Sun Yat-sen University between January 2017 and December 2022 were analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Orthogonal partial least squares discriminant analysis (OPLS-DA) and metabolite enrichment analyses were performed to identify the differential metabolites and metabolic pathways. There was a significant difference in the blood metabolism between newborns with IPH and those with normal amniotic fluid. Six discriminant metabolites were identified: glutamate, serine, asparagine, aspartic acid, homocysteine, and phenylalanine. Differential metabolites were mainly enriched in two pathways: aminoacyl-tRNA biosynthesis, and alanine, aspartate, and glutamate metabolism.

Conclusions: This study is the first to investigate metabolomic profiles in newborns with IPH and examine the correlation between IPH and fetal health. Differential metabolites and pathways may affect amino acid synthesis and the nervous system. Continuous attention to the development of the nervous system in children with IPH is necessary.

What is Known:

• There is an increased risk of adverse pregnancy outcomes with IPH, such as perinatal death, neonatal asphyxia, neonatal intensive care admission, cesarean section rates, and postpartum hemorrhage.

• Children with a history of IPH have a higher proportion of defects than the general population, particularly central nervous system problems, neuromuscular disorders, and other malformations.

What is New:

• In neonates with IPH, six differential metabolites were identified with significant differences and good AUC values using LC-MS/MS analysis: glutamic acid, serine, asparagine, aspartic acid, homocysteine, and phenylalanine, which were mainly enriched in two metabolic pathways: aminoacyl-tRNA biosynthesis and alanine, aspartate, and glutamate metabolism.

• These differential metabolites and pathways may affect amino acid synthesis and development of the nervous system in neonates with IPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All the data are available from the corresponding authors upon reasonable request.

Abbreviations

IPH:

idiopathic polyhydramnios

LC-MS/MS:

liquid chromatography-mass spectrometry

OPLS-DA:

Orthogonal partial least squares discriminant analysis

AFI:

amniotic fluid index

SDP:

single deepest pocket

VIP:

variable importance in projection

TCA:

tricarboxylic acid

HIE:

hypoxic-ischemic encephalopathy

References

  1. Rasmussen S, Linde LE, Ebbing C (2022) Recurrence of idiopathic polyhydramnios: A nationwide population study. Int J Gynaecol Obstet 157:198–9. https://doi.org/10.1002/ijgo.14001

    Article  PubMed  Google Scholar 

  2. Wax JR, Cartin A, Craig WY, Pinette MG (2022) Transient Idiopathic Polyhydramnios: Maternal and Perinatal Outcomes: Maternal and Perinatal Outcomes. J Ultrasound Med 41:2859–66. https://doi.org/10.1002/jum.15974

    Article  PubMed  Google Scholar 

  3. Pagan M, Magann EF, Rabie N, Steelman SC, Hu Z, Ounpraseuth S (2023) Idiopathic polyhydramnios and pregnancy outcome: systematic review and meta-analysis. Ultrasound Obstet Gynecol 61:302-309. https://doi.org/10.1002/uog.24973

  4. Polnaszek B, Liang B, Zhang F, Cahill AG, Raghuraman N, Young OM (2021) Idiopathic polyhydramnios and neonatal morbidity at term. Am J Perinatol 14. https://doi.org/10.1055/s-0041-1739435

  5. Cen J, Lv L, Wei Y, Deng L, Huang L, Deng X, Qin Q, Sun Y, Pang L (2020) Comparative proteome analysis of amniotic fluids and placentas from patients with idiopathic polyhydramnios. Placenta 89:67–77. https://doi.org/10.1016/j.placenta.2019.10.010

    Article  CAS  PubMed  Google Scholar 

  6. Brace RA, Cheung CY, Anderson DF (2018) Regulation of amniotic fluid volume: insights derived from amniotic fluid volume function curves. Am J Physiol Regul Integr Comp Physiol 315(4):R777–R789. https://doi.org/10.1152/ajpregu.00175.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeino S, Carbillon L, Pharisien I, Tigaizin A, Benchimol M, Murtada R, Boujenah J (2017) Delivery outcomes of term pregnancy complicated by idiopathic polyhydramnios. J Gynecol Obstet Hum Reprod 46:349–54. https://doi.org/10.1016/j.jogoh.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  8. Luo QQ, Zou L, Gao H, Zheng YF, Zhao Y, Zhang WY (2017) Idiopathic polyhydramnios at term and pregnancy outcomes: a multicenter observational study. J Matern Fetal Neonatal Med 30:1755–59. https://doi.org/10.1080/14767058.2016.1224835

    Article  PubMed  Google Scholar 

  9. Khan S, Donnelly J (2017) Outcome of pregnancy in women diagnosed with idiopathic polyhydramnios. Aust N Z J Obstet Gynaecol 57:57–62. https://doi.org/10.1111/ajo.12578

    Article  PubMed  Google Scholar 

  10. Adamczyk M, Kornacki J, Wirstlein P, Szczepanska M, Wender-Ozegowska E (2019) Follow-up of children with antenatally diagnosed idiopathic polyhydramnios. Ginekol Pol 90:93–99. https://doi.org/10.5603/GP.2019.0016

    Article  PubMed  Google Scholar 

  11. Peng B, Li H, Peng XX (2015) Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein Cell 6:628–37. https://doi.org/10.1007/s13238-015-0185-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Q, Zhang AH, Miao JH, Sun H, Han Y, Yan GL, Wu FF, Wang XJ (2019) Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv 9:37245–57. https://doi.org/10.1039/c9ra06697g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fanos V, Pintus R, Dessi A (2018) Clinical Metabolomics in Neonatology: From Metabolites to Diseases. Neonatology 113:406–13. https://doi.org/10.1159/000487620

    Article  PubMed  Google Scholar 

  14. Hao H, Gu X, Cai Y, Xiong H, Huang L, Shen W, Ma F, Xiao X, Li S (2021) The influence of pregnancy-induced hypertension syndrome on the metabolism of newborns. Transl Pediatr 10:296–305. https://doi.org/10.21037/tp-20-211

  15. Araújo R, Bento LFN, Fonseca TAH, Von Rekowski CP, da Cunha BR, Calado CRC (2022) Infection Biomarkers Based on Metabolomics. Metabolites 12:92. https://doi.org/10.3390/metabo12020092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Chen Z, Kang L, He R, Song J, Liu Y, Shi C, Chen J, Dong H, Zhang Y, Ma Y, Wu T, Wang Q, Ding Y, Li X, Li D, Li M, Jin Y, Qin J, Yang Y (2022) Comparing amniotic fluid mass spectrometry assays and amniocyte gene analyses for the prenatal diagnosis of methylmalonic aciduria. PloS One 17:e0265766. https://doi.org/10.1371/journal.pone.0265766

  17. Shi C, Li S, Gao Y, Deng Z, Hao H, Xiao X (2022) Prenatal diagnosis of two common inborn errors of metabolism by genetic and mass spectrometric analysis of amniotic fluid. Front Pediatr 10:824399. https://doi.org/10.3389/fped.2022.824399

  18. Wilcken B (2012) Screening for disease in the newborn: the evidence base for blood-spot screening. Pathology 44(2):73–9. https://doi.org/10.1097/PAT.0b013e32834e843f

    Article  PubMed  Google Scholar 

  19. Müller IR, Linden G, Charão MF, Antunes MV, Linden R (2023) Dried blood spot sampling for therapeutic drug monitoring: challenges and opportunities. Expert Rev Clin Pharmacol 16(8):691–701. https://doi.org/10.1080/17512433.2023.2224562

    Article  CAS  PubMed  Google Scholar 

  20. Demirev PA (2013) Dried blood spots: analysis and applications. Anal Chem 85(2):779–89. https://doi.org/10.1021/ac303205m

    Article  CAS  PubMed  Google Scholar 

  21. Palmer EA, Cooper HJ, Dunn WB (2019) Investigation of the 12-Month Stability of Dried Blood and Urine Spots Applying Untargeted UHPLC-MS Metabolomic Assays. Anal Chem 91(22):14306–14313. https://doi.org/10.1021/acs.analchem.9b02577

    Article  CAS  PubMed  Google Scholar 

  22. Sadones N, Capiau S, De Kesel PM, Lambert WE, Stove CP (2014) Spot them in the spot: analysis of abused substances using dried blood spots. Bioanalysis 6(17):2211–27. https://doi.org/10.4155/bio.14.156

    Article  CAS  PubMed  Google Scholar 

  23. Freeman JD, Rosman LM, Ratcliff JD, Strickland PT, Graham DR, Silbergeld EK (2018) State of the Science in Dried Blood Spots. Clin Chem 64(4):656–679. https://doi.org/10.1373/clinchem.2017.275966

    Article  CAS  PubMed  Google Scholar 

  24. Rubio Gomez MA, Ibba M (2020) Aminoacyl-tRNA synthetases. RNA 26:910–36. https://doi.org/10.1261/rna.071720.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pang YL, Poruri K, Martinis SA (2014) tRNA synthetase: tRNA aminoacylation and beyond. Wiley Interdiscip Rev RNA 5:461–80. https://doi.org/10.1002/wrna.1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Turvey AK, Horvath GA, Cavalcanti ARO (2022) Aminoacyl-tRNA synthetases in human health and disease. Front Physiol 13:1029218. https://doi.org/10.3389/fphys.2022.1029218

    Article  PubMed  PubMed Central  Google Scholar 

  27. Onaolapo AY, Onaolapo OJ (2021) Peripheral and Central Glutamate Dyshomeostasis in Neurodegenerative Disorders. Curr Neuropharmacol 19:1069–89. https://doi.org/10.2174/1570159X18666201015161919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30. https://doi.org/10.1007/978-3-319-08894-5_2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Basu SK, Pradhan S, Barnett SD, Mikkelsen M, Kapse KJ, Murnick J, Quistorff JL, Lopez CA, du Plessis AJ, Limperopoulos C (2022) Regional Differences in Gamma-Aminobutyric Acid and Glutamate Concentrations in the Healthy Newborn Brain. AJNR Am J Neuroradiol 43:125–31. https://doi.org/10.3174/ajnr.A7336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Skytt DM, Klawonn AM, Stridh MH, Pajęcka K, Patruss Y, Quintana-Cabrera R, Bolaños JP, Schousboe A, Waagepetersen HS (2012) siRNA knock down of glutamate dehydrogenase in astrocytes affects glutamate metabolism leading to extensive accumulation of the neuroactive amino acids glutamate and aspartate. Neurochem Int 61:490–7. https://doi.org/10.1016/j.neuint.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  31. Lewerenz J, Maher P (2015) Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front Neurosci 9:469. https://doi.org/10.3389/fnins.2015.00469

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zwingmann C, Richter-Landsberg C, Brand A, Leibfritz D (2000) NMR spectroscopic study on the metabolic fate of [3-(13)C]alanine in astrocytes, neurons, and cocultures: implications for glia-neuron interactions in neurotransmitter metabolism. Glia 32:286–303. https://doi.org/10.1002/1098-1136(200012)32:3<286::aid-glia80>3.0.co;2-p

  33. Griffin JL, Rae C, Dixon RM, Radda GK, Matthews PM (1998) Excitatory amino acid synthesis in hypoxic brain slices: does alanine act as a substrate for glutamate production in hypoxia? J Neurochem 71(6):2477–86. https://doi.org/10.1046/j.1471-4159.1998.71062477.x

    Article  CAS  PubMed  Google Scholar 

  34. Hilgier W, Zielińska M, Borkowska HD, Gadamski R, Walski M, Oja SS, Saransaari P, Albrecht J (1999) Changes in the extracellular profiles of neuroactive amino acids in the rat striatum at the asymptomatic stage of hepatic failure. J Neurosci Res 56(1):76–84. https://doi.org/10.1002/(SICI)1097-4547(19990401)56:1<76::AID-JNR10>3.0.CO;2-Y

  35. Swain M, Butterworth RF, Blei AT (1992) Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 15(3):449–53. https://doi.org/10.1002/hep.1840150316

    Article  CAS  PubMed  Google Scholar 

  36. Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205. https://doi.org/10.2174/1566524043479185

    Article  CAS  PubMed  Google Scholar 

  37. Martineau M, Baux G, Mothet JP (2006) D-serine signalling in the brain: friend and foe. Trends Neurosci 29:481–91. https://doi.org/10.1016/j.tins.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  38. Tuchman M, Yudkoff M (1999) Blood levels of ammonia and nitrogen scavenging amino acids in patients with inherited hyperammonemia. Mol Genet Metab 66(1):10–5. https://doi.org/10.1006/mgme.1998.2783

    Article  CAS  PubMed  Google Scholar 

  39. Pregnolato S, Chakkarapani E, Isles AR, Luyt K (2019) Glutamate Transport and Preterm Brain Injury. Front Physiol 10:417. https://doi.org/10.3389/fphys.2019.00417

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pu Y, Li QF, Zeng CM, Gao J, Qi J, Luo DX, Mahankali S, Fox PT, Gao JH (2000) Increased detectability of alpha brain glutamate/glutamine in neonatal hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol 21(1):203–12. PMID: 10669252

  41. Pregnolato S, Sabir H, Luyt K, Rienecker KD, Isles AR, Chakkarapani E (2022) Regulation of glutamate transport and neuroinflammation in a term newborn rat model of hypoxic-ischaemic brain injury. Brain Neurosci Adv 6:23982128221097570. https://doi.org/10.1177/23982128221097568

    Article  PubMed  PubMed Central  Google Scholar 

  42. Takahashi K, Foster JB, Lin CL (2015) Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci 72(18):3489–506. https://doi.org/10.1007/s00018-015-1937-8

    Article  CAS  PubMed  Google Scholar 

  43. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57:226–35. https://doi.org/10.1002/ana.20380

    Article  CAS  PubMed  Google Scholar 

  44. You J, Feng L, Xin M, Ma D, Feng J (2018) Cerebral ischemic postconditioning plays a neuroprotective role through regulation of central and peripheral glutamate. Biomed Res Int 2018:6316059. https://doi.org/10.1155/2018/6316059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Colombo MN, Francolini M (2019) Glutamate at the vertebrate neuromuscular junction: from modulation to neurotransmission. Cells 8:996. https://doi.org/10.3390/cells8090996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the children and their families.

Funding

This work was supported by Guangdong Provincial Science and Technology Projects (2020A1414010111).

Author information

Authors and Affiliations

Authors

Contributions

QY and JS drafted the manuscript and analyzed the data. ZD created the illustrations. CS and SL helped interpreted the data. GZ review and editing the manuscript. HH and YC design the study, reviewed and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guiying Zhuang, Hu Hao or Yao Cai.

Ethics declarations

Ethics approval and consent to participate

This study protocol was reviewed and approved by the Medical Ethics Committee of the Sixth Affiliated Hospital, Sun Yat-sen University (approval code 2021ZSLYEC-047) and was conducted in accordance with the Helsinki Declaration of 1964, as revised in 2000. Written informed consent was obtained from the parents of all participants.

Consent for publication

Informed consent was obtained from all patients’ parents.

Competing interests

The authors declare that they have no competing interests.

Additional information

Communicated by Daniele De Luca

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Song, J., Deng, Z. et al. Discrimination of blood metabolomics profiles in neonates with idiopathic polyhydramnios. Eur J Pediatr 182, 5015–5024 (2023). https://doi.org/10.1007/s00431-023-05171-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-023-05171-1

Keywords

Navigation