Skip to main content

Advertisement

Log in

Children with inflammatory bowel disease already have an altered arterial pulse wave

  • RESEARCH
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Adults with inflammatory bowel disease (IBD) have an increased risk for vascular events. This study aims to evaluate arterial parameters in paediatric IBD. Carotid intima-media thickness (CIMT) was measured by ultrasound, and Arteriograph was used to assess aortic pulse wave velocity (PWVao), brachial and aortic augmentation indexes (AixBrach, AixAo), central systolic blood pressure (SBPao), and heart rate (HR). A total of 161 children were included; 55 (34%) children with newly diagnosed IBD (median age 14.35 (11.88–16.31) years, 53% males), 53(33%) in remission (median age 15.62 (13.46–16.70) years, 66% males), and 53 (33%) controls (median age 14.09 (11.18–14.09) years, 55% males) were recruited into a case–control study. Compared to controls, patients with active disease and those in clinical remission had significantly lower AixBrach and AixAo (P < 0.001, P = 0.009; P < 0.001, P = 0.003). PWVao and CIMT were still normal. HR was higher in both IBD groups than in controls (P < 0.001; P = 0.006). HR positively correlated with disease duration (P = 0.001). In the ordinary least squares regression models, anti-tumour necrosis factor (TNF) α treatment predicted lower peripheral and central systolic blood pressures, in contrast to aminosalicylates and methotrexate. Aminosalicylate treatment predicted increased HR.

  Conclusion: Children with IBD have an increased heart rate, a lower augmentation index and, therefore, an altered pulse waveform. In paediatric IBD, arterial stiffness and CIMT are still normal, indicating the potential for adequate IBD treatment to preserve arterial health.

What is Known:

Adult patients with inflammatory bowel disease (IBD) have increased carotid intima-media thickness and arterial stiffness, which positively correlates with cardiovascular risk and predicts mortality. Adequate treatment, especially anti-tumour necrosis factor (TNF) α medications, lower these risks.

Children with IBD have impaired endothelial function and reduced heart rate (HR) variability.

What is New:

Children with IBD have impaired endothelial function and reduced heart rate (HR) variability.

Anti-TNFα treatment in children and adolescents with IBD lowers systolic pressure, whereas methotrexate and aminosalicylates have the opposite effect. Amiynosalyiciylate treatment also increases HR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data is available on request from the authors.

Abbreviations

Aix:

Augmentation index

AixAo:

Aortic augmentation index

AixBrach:

Brachial augmentation index

BMI:

Body mass index

CD:

Crohn’s disease

cfPWV:

Carotid-femoral pulse wave velocity

CIMT:

Carotid intima-media thickness

CRP:

C-reactive protein

DBP:

Diastolic blood pressure

EEN:

Exclusive enteral nutrition

ESR:

Erythrocyte sedimentation rate

HR:

Heart rate

IBD:

Inflammatory bowel disease

IBDU:

Inflammatory bowel disease unclassified

IQR:

Interquartile range

OLS:

Ordinary least squares

PCDAI:

Pediatric Crohn’s Disease Activity Index

PUCAI:

Pediatric Ulcerative Colitis Activity Index

PWV:

Pulse wave velocity

PWVao:

Aortic pulse wave velocity measured by Arteriograph

P1:

Forward wave

P2:

Reflected wave

SBP:

Systolic blood pressure

SBPao:

Central systolic blood pressure

UC:

Ulcerative colitis

TNF:

Tumour necrosis factor

References

  1. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55:1318–1327. https://doi.org/10.1016/j.jacc.2009.10.061

    Article  PubMed  Google Scholar 

  2. Laurent S, Cockcroft J, Van Bortel L et al (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605. https://doi.org/10.1093/eurheartj/ehl254

    Article  PubMed  Google Scholar 

  3. Lorenz MW, Polak JF, Kavousi M et al (2012) Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet 379:2053–2062. https://doi.org/10.1016/S0140-6736(12)60441-3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arida A, Protogerou AD, Kitas GD, Sfikakis PP (2018) Systemic inflammatory response and atherosclerosis: the paradigm of chronic inflammatory rheumatic diseases. Int J Mol Sci 19(7):1890. https://doi.org/10.3390/ijms19071890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ghione S, Sarter H, Fumery M et al (2018) Dramatic increase in incidence of ulcerative colitis and Crohn’s disease (1988–2011): a population-based study of French adolescents. Am J Gastroenterol 113(2):265–272. https://doi.org/10.1038/ajg.2017.228

    Article  PubMed  Google Scholar 

  6. Bigeh A, Sanchez A, Maestas C, Gulati M (2019) Inflammatory bowel disease and the risk for cardiovascular disease: does all inflammation lead to heart disease? Trends Cardiovasc Med 30(8):463–469. https://doi.org/10.1016/j.tcm.2019.10.001

    Article  CAS  PubMed  Google Scholar 

  7. Choi YJ, Lee DH, Shin DW et al (2019) Patients with inflammatory bowel disease have an increased risk of myocardial infarction: a nationwide study. Aliment Pharmacol Ther 50:769–779. https://doi.org/10.1111/apt.15446

    Article  PubMed  Google Scholar 

  8. Üstün Y, Kilincalp S, Çoban Ş et al (2016) Evaluation of early atherosclerosis markers in patients with inflammatory bowel disease. Med Sci Monit 22:3943–3950. https://doi.org/10.12659/msm.898160

  9. Wu G-C, Leng R-X, Lu Q et al (2017) Subclinical atherosclerosis in patients with inflammatory bowel diseases: a systematic review and meta-analysis. Angiology 68:447–546. https://doi.org/10.1177/0003319716652031

    Article  PubMed  Google Scholar 

  10. Cappello M, Licata A, Calvaruso V et al (2017) Increased expression of markers of early atherosclerosis in patients with inflammatory bowel disease. Eur J Intern Med 37:83–89. https://doi.org/10.1016/j.ejim.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  11. Kothari HG, Gupta SJ, Gaikwad NR (2019) Utility of carotid intima-media thickness as an auxiliary vascular parameter of structural alteration in ulcerative colitis. Inflamm Intest Dis 4:27–34. https://doi.org/10.1159/000499199

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bruzzese V, Palermo G, Ridola L et al (2017) Preclinical atherosclerosis in patients with inflammatory bowel diseases: a case-control study. Ann Transl Med 5:158. https://doi.org/10.21037/atm.2017.03.68

  13. Dorfman L, Ghersin I, Khateeb N et al (2020) Cardiovascular risk factors are not present in adolescents with inflammatory bowel disease. Acta Paediatr 109:2380–2387. https://doi.org/10.1111/apa.15237

  14. Zanoli L, Rastelli S, Inserra G, Castellino P (2015) Arterial structure and function in inflammatory bowel disease. World J Gastroenterol 21:11304–21131. https://doi.org/10.3748/wjg.v21.i40.11304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. IBD Working Group of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (2005) Inflammatory bowel disease in children and adolescents: recommendations for diagnosis-the Porto criteria. J Pediatr Gastroenterol Nutr 41(1):1–7. https://doi.org/10.1097/01.mpg.0000163736.30261.82

    Article  Google Scholar 

  16. Hyams J, Markowitz J, Otley A et al (2005) Evaluation of the Pediatric Crohn Disease Activity Index: a prospective multicenter experience. J Pediatr Gastroenterol Nutr 41:416–421. https://doi.org/10.1097/01.mpg.0000183350.46795.42

    Article  PubMed  Google Scholar 

  17. Turner D, Otley AR, Mack D et al (2007) Development, validation, and evaluation of a Pediatric Ulcerative Colitis Activity Index: a prospective multicenter study. Gastroenterology 133:423–432. https://doi.org/10.1053/j.gastro.2007.05.029

    Article  PubMed  Google Scholar 

  18. Horváth IG, Németh Á, Lenkey Z et al (2010) Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens 28:2068. https://doi.org/10.1097/HJH.0b013e32833c8a1a

    Article  CAS  PubMed  Google Scholar 

  19. Davies JM, Bailey MA, Griffin KJ, Scott DJA (2012) Pulse wave velocity and the non-invasive methods used to assess it: Complior, SphygmoCor, Arteriograph and Vicorder. Vascular 20:342–349. https://doi.org/10.1258/vasc.2011.ra0054

    Article  PubMed  Google Scholar 

  20. Rossen NB, Laugesen E, Peters CD et al (2014) Invasive validation of Arteriograph estimates of central blood pressure in patients with type 2 diabetes. Am J Hypertens 27:674–679. https://doi.org/10.1093/ajh/hpt162

    Article  PubMed  Google Scholar 

  21. Stein JH, Johnson HM (2010) Carotid intima-media thickness, plaques, and cardiovascular disease risk: implications for preventive cardiology guidelines. J Am Coll Cardiol 55:1608–1610. https://doi.org/10.1016/j.jacc.2009.11.073

    Article  PubMed  Google Scholar 

  22. Levine A, Griffiths A, Markowitz J et al (2011) Pediatric modification of the Montreal Classification for inflammatory bowel disease: The Paris Classification. Inflamm Bowel Dis 6:1314–1321. https://doi.org/10.1002/ibd.21493

    Article  Google Scholar 

  23. Zanoli L, Rastelli S, Granata A et al (2016) Arterial stiffness in inflammatory bowel disease: a systematic review and meta-analysis. J Hypertens 34:822–829. https://doi.org/10.1097/HJH.0000000000000867

    Article  CAS  PubMed  Google Scholar 

  24. Fan F, Galvin A, Fang L et al (2014) Comparison of inflammation, arterial stiffness and traditional cardiovascular risk factors between rheumatoid arthritis and inflammatory bowel disease. J Inflamm 11:29. https://doi.org/10.1186/s12950-014-0029-0

    Article  CAS  Google Scholar 

  25. Aloi M, Tromba L, Di Nardo G et al (2012) Premature subclinical atherosclerosis in pediatric inflammatory bowel disease. J Pediatr 161:589–594. https://doi.org/10.1016/j.tcm.2019.10.001

    Article  CAS  PubMed  Google Scholar 

  26. Andreozzi M, Giugliano FP, Strisciuglio T et al (2019) The role of inflammation in the endothelial dysfunction in a cohort of pediatric patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 69:330–335. https://doi.org/10.1016/j.jpeds.2012.03.043

    Article  CAS  PubMed  Google Scholar 

  27. Petr J, Michal H, Jan S et al (2014) Reactive hyperaemia index as a marker of endothelial dysfunction in children with Crohn’s disease is significantly lower than healthy controls. Acta Paediatr 103:e55–e60. https://doi.org/10.1111/apa.12467

    Article  CAS  PubMed  Google Scholar 

  28. Lurz E, Aeschbacher E, Carman N et al (2017) Pulse wave velocity measurement as a marker of arterial stiffness in pediatric inflammatory bowel disease: a pilot study. Eur J Pediatr 176:983–987. https://doi.org/10.1007/s00431-017-2927-7

    Article  CAS  PubMed  Google Scholar 

  29. Protogerou A, Safar M (2007) Dissociation between central augmentation index and carotid-femoral pulse-wave velocity: When and why? Am J Hypertens 20:648–649. https://doi.org/10.1016/j.amjhyper.2007.02.008

    Article  PubMed  Google Scholar 

  30. Weber T, O’Rourke MF, Ammer M et al (2008) Arterial stiffness and arterial wave reflections are associated with systolic and diastolic function in patients with normal ejection fraction. Am J Hypertens 21:1194–1202. https://doi.org/10.1038/ajh.2008.277

    Article  PubMed  Google Scholar 

  31. Tartière J-M, Logeart D, Safar ME, Cohen-Solal A (2006) Interaction between pulse wave velocity, augmentation index, pulse pressure and left ventricular function in chronic heart failure. J Hum Hypertens 20:213–219. https://doi.org/10.1038/sj.jhh.1001965

    Article  PubMed  Google Scholar 

  32. van de Velde L, Eeftinck Schattenkerk DW, Venema PAHT et al (2018) Myocardial preload alters central pressure augmentation through changes in the forward wave. J Hypertens 36:544–551. https://doi.org/10.1097/HJH.0000000000001583

    Article  CAS  PubMed  Google Scholar 

  33. Sakurai M, Yamakado T, Kurachi H et al (2007) The relationship between aortic augmentation index and pulse wave velocity: an invasive study. J Hypertens 25:391–397. https://doi.org/10.1097/HJH.0b013e3280115b7c

    Article  CAS  PubMed  Google Scholar 

  34. Georgianos PI, Sarafidis PA, Malindretos P et al (2011) Hemodialysis reduces augmentation index but not aortic or brachial pulse wave velocity in dialysis-requiring patients. Am J Nephrol 34:407–414. https://doi.org/10.1159/000331700

    Article  PubMed  Google Scholar 

  35. Nichols WW, Denardo SJ, Wilkinson IB et al (2008) Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform. J Clin Hypertens 10:295–303. https://doi.org/10.1111/j.1751-7176.2008.04746.x

  36. Wilkinson IB, Mohammad NH, Tyrrell S et al (2002) Heart rate dependency of pulse pressure amplification and arterial stiffness. Am J Hypertens 15:24–30. https://doi.org/10.1016/s0895-7061(01)02252-x

    Article  PubMed  Google Scholar 

  37. Kuilder JS, Idris NS, Grobbee DE et al (2017) Association between human immunodeficiency virus infection and arterial stiffness in children. Eur J Prev Cardiol 24:480–488. https://doi.org/10.1177/2047487316680694

    Article  PubMed  Google Scholar 

  38. Öztürk GK, Eşki̇ A, Çeli̇k FÇ et al (2020) Prospective evaluation of vascular changes in acute respiratory infections in children with cystic fibrosis. Turk J Med Sci 50:1007–1014. https://doi.org/10.3906/sag-2002-61

    Article  CAS  Google Scholar 

  39. Mogilevski T, Burgell R, Aziz Q, Gibson PR (2019) Review article: the role of the autonomic nervous system in the pathogenesis and therapy of IBD. Aliment Pharmacol Ther 50:720–737. https://doi.org/10.1111/apt.15433

    Article  PubMed  Google Scholar 

  40. Jelenova D, Ociskova M, Prasko J et al (2015) Heart rate variability in children with inflammatory bowel diseases. Neuro Endocrinol Lett 36:72–79

    PubMed  Google Scholar 

  41. Yerushalmy-Feler A, Cohen S, Lubetzky R et al (2022) Heart rate variability as a predictor of disease exacerbation in pediatric inflammatory bowel disease. J Psychosom Res 158:110911. https://doi.org/10.1016/j.jpsychores.2022.110911

  42. Aloi M, Tromba L, Rizzo V et al (2015) Aortic intima-media thickness as an early marker of atherosclerosis in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 61:41. https://doi.org/10.1097/MPG.0000000000000771

    Article  CAS  PubMed  Google Scholar 

  43. Ilisson J, Zagura M, Zilmer K et al (2015) Increased carotid artery intima-media thickness and myeloperoxidase level in children with newly diagnosed juvenile idiopathic arthritis. Arthritis Res Ther 17(1):18. https://doi.org/10.1186/s13075-015-0699-x

    Article  CAS  Google Scholar 

  44. Ozturk K, Guler AK, Cakir M et al (2015) Pulse wave velocity, intima-media thickness, and flow-mediated dilatation in patients with normotensive normoglycemic inflammatory bowel disease. Inflamm Bowel Dis 21(6):1314–1320. https://doi.org/10.1097/MIB.0000000000000355

    Article  PubMed  Google Scholar 

  45. Kayahan H, Sari I, Cullu N et al (2012) Evaluation of early atherosclerosis in patients with inflammatory bowel disease. Dig Dis Sci 57:2137–2143. https://doi.org/10.1007/s10620-012-2148-x

    Article  CAS  PubMed  Google Scholar 

  46. Kirchgesner J, Andersen NN, Carrat F et al (2020) Risk of acute arterial events associated with treatment of inflammatory bowel diseases: nationwide French cohort study. Gut 69:852–858. https://doi.org/10.1136/gutjnl-2019-318932

    Article  CAS  PubMed  Google Scholar 

  47. Schinzari F, Armuzzi A, De Pascalis B et al (2008) Tumor necrosis factor-α antagonism improves endothelial dysfunction in patients with Crohn’s disease. Clin Pharmacol Ther 83:70–76. https://doi.org/10.1038/sj.clpt.6100229

    Article  CAS  PubMed  Google Scholar 

  48. Altorjay I, Veréb Z, Serfőző Z et al (2011) Anti-TNF-α antibody (Infliximab) therapy supports the recovery of eNOS and VEGFR2 protein expression in endothelial cells. Int J Immunopathol Pharmacol 24:323–335. https://doi.org/10.1177/039463201102400206

    Article  CAS  PubMed  Google Scholar 

  49. Zanoli L, Rastelli S, Inserra G et al (2014) Increased arterial stiffness in inflammatory bowel diseases is dependent upon inflammation and reduced by immunomodulatory drugs. Atherosclerosis 234(2):346–351. https://doi.org/10.1016/j.atherosclerosis.2014.03.023

    Article  CAS  PubMed  Google Scholar 

  50. Zanoli L, Ozturk K, Cappello M et al (2019) Inflammation and aortic pulse wave velocity: a multicenter longitudinal study in patients with inflammatory bowel disease. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.010942

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mitchell JA, Warner TD (2006) COX isoforms in the cardiovascular system: understanding the activities of non-steroidal anti-inflammatory drugs. Nat Rev Drug Discov 5:75–86. https://doi.org/10.1038/nrd1929

    Article  CAS  PubMed  Google Scholar 

  52. Bălănescu A-R, Bojincă VC, Bojincă M et al (2019) Cardiovascular effects of methotrexate in immune-mediated inflammatory diseases. Exp Ther Med 17:1024–1029. https://doi.org/10.3892/etm.2018.6992

    Article  CAS  PubMed  Google Scholar 

  53. Sundström J, Sullivan L, D’Agostino RB et al (2003) Plasma homocysteine, hypertension incidence, and blood pressure tracking: the Framingham Heart Study. Hypertension 42:1100–1105. https://doi.org/10.1161/01.HYP.0000101690.58391.13

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to the nursing staff of the Department of Paediatrics, Children’s Hospital Zagreb, especially Višnjica Kerman, Bernarda Kovačević, Nataša Tomašić, and Katarina Kral for the kind help in collecting patients and the testing itself.

Funding

This work was supported by Croatian Science Foundation (Chronic bowel diseases in children: looking beyond the gut; grant number-IP-2019–04-3028).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design, material preparation, and data collection. V Tokić Pivac conducted data analysis. V Tokić Pivac wrote the first draft, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Višnja Tokić Pivac.

Ethics declarations

Ethics approval

Ethical Committees at Children’s Hospital Zagreb and the University of Zagreb School of Medicine approved the study design.

Informed consent

At least one parent or guardian and children older than eight had signed the informed consent.

Competing interests

Authors V Tokić Pivac, V Herceg-Čavrak, Z Mišak, and O Jadrešin have no competing interests to declare that are relevant to the content of this article. I Hojsak received payment for lectures: BioGaia, Nutricia, Biocodex, AbelaPharm, Nestle, Abbott, Sandoz, Oktal pharma, and Takeda. S Kolaček received lecture fees from Abbott, AbbVie, Abela pharm, GM Pharma, Nestle, Nestle Nutrition Institute, Nutricia, Oktal Pharma, and Takeda.

Additional information

Communicated by Peter de Winter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivac, V.T., Herceg-Čavrak, V., Hojsak, I. et al. Children with inflammatory bowel disease already have an altered arterial pulse wave. Eur J Pediatr 182, 1771–1779 (2023). https://doi.org/10.1007/s00431-023-04858-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-023-04858-9

Keywords

Navigation