Skip to main content
Log in

Prediction of respiratory distress severity and bronchopulmonary dysplasia by lung ultrasounds and transthoracic electrical bioimpedance

  • Research
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

This study aims to evaluate whether the assessment of a lung ultrasound score (LUS) by lung ultrasonography and of thoracic fluid contents (TFC) by electrical cardiometry may predict RDS severity and the development of bronchopulmonary dysplasia (BPD) in preterm infants with respiratory distress (RDS). Infants ≤ 34 weeks’ gestation admitted with RDS to two neonatal intensive care units were prospectively enrolled in this observational study. A simultaneous evaluation of LUS and TFC was performed during the first 72 h. The predictivity of LUS and TFC towards mechanical ventilation (MV) need after 24 h and BPD development was evaluated using receiver operating characteristic analysis. Sixty-four infants were included. The area under the curve (AUC) for the prediction of MV need was 0.851 (95%CI, 0.776–0.925, p < 0.001) for LUS and 0.793 (95%CI, 0.724–0.862, p < 0.001) for TFC, while an AUC of 0.876 (95%CI, 0.807–0.946, p < 0.001) was obtained for combined LUS and TFC evaluation. LUS and TFC AUC for BPD prediction were 0.769 (95%CI, 0.697–0.842, p < 0.001) and 0.836 (95%CI, 0.778–0.894, p < 0.001), respectively, whereas their combined assessment yielded an AUC of 0.867 (95%CI, 0.814–0.919, p < 0.001). LUS ≥ 11 and TFC ≥ 40 were identified as cut-off values for MV need prediction, whereas LUS ≥ 9 and TFC ≥ 41.4 best predicted BPD development.

  Conclusion: A combined evaluation of LUS and TFC by lung ultrasonography and EC during the first 72 h may represent a useful predictive tool towards short- and medium-term pulmonary outcomes in preterm infants with RDS.

What is Known:

• Lung ultrasonography is largely used in neonatal intensive care and can contribute to RDS diagnosis in preterm infants.

• Little is known on the diagnostic and predictive role of TFC, measured by transthoracic electrical bioimpedance, in neonatal RDS.

What is New:

• Combining lung ultrasonography and TFC evaluation during the first 72 h can improve the prediction of RDS severity and BPD development in preterm infants with RDS and may aid to establish tailored respiratory approaches to improve these outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Data are available from the corresponding author upon reasonable request.

Code availability

N/A.

Abbreviations

AUC:

Area under the curve

BPD:

Bronchopulmonary dysplasia

CI:

Confidence interval

EC:

Electrical cardiometry

GA:

Gestational age

LR:

Likelihood ratio

LUS:

Lung ultrasound score

NPV:

Negative predictive value

PPV:

Positive predictive value

RDS:

Respiratory distress

ROC:

Receiving operator characteristic

TFC:

Thoracic fluid contents

References

  1. Whitsett JA, Weaver TE (2015) Alveolar development and disease. Am J Respir Cell Mol Biol 53:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmidt AR, Ramamoorthy C (2022) Bronchopulmonary dysplasia. Paediatr Anaesth 32:174–180

    Article  PubMed  Google Scholar 

  3. Copetti R, Cattarossi L, Macagno F, Violino M, Furlan R (2008) Lung ultrasound in respiratory distress syndrome: a useful tool for early diagnosis. Neonatology 94:52–59

    Article  PubMed  Google Scholar 

  4. Gregorio-Hernández R, Arriaga-Redondo M, Pérez-Pérez A, Ramos-Navarro C, Sánchez-Luna M (2020) Lung ultrasound in preterm infants with respiratory distress: experience in a neonatal intensive care unit. Eur J Pediatr 179:81–89

    Article  PubMed  Google Scholar 

  5. Oktem A, Yigit S, Oğuz B, Celik T, Haliloğlu M, Yurdakok M (2021) Accuracy of lung ultrasonography in the diagnosis of respiratory distress syndrome in newborns. J Matern Fetal Neonatal Med 34:281–286

    Article  PubMed  Google Scholar 

  6. Corsini I, Parri N, Gozzini E, Coviello C, Leonardi V, Poggi C, Giacalone M, Bianconi T, Tofani L, Raimondi F, Dani C (2019) Lung ultrasound for the differential diagnosis of respiratory distress in neonates. Neonatology 115:77–84

    Article  PubMed  Google Scholar 

  7. Ma H, Yan W, Liu J (2020) Diagnostic value of lung ultrasound for neonatal respiratory distress syndrome: a meta-analysis and systematic review. Med Ultrason 22:325–333

    Article  PubMed  Google Scholar 

  8. Pang H, Zhang B, Shi J, Zang J, Qiu L (2019) Diagnostic value of lung ultrasound in evaluating the severity of neonatal respiratory distress syndrome. Eur J Radiol 116:186–191

    Article  PubMed  Google Scholar 

  9. Raimondi F, Migliaro F, Corsini I, Meneghin F, Dolce P, Pierri L, Perri A, Aversa S, Nobile S, Lama S, Varano S, Savoia M, Gatto S, Leonardi V, Capasso L, Carnielli VP, Mosca F, Dani C, Vento G, Lista G (2021) Lung ultrasound score progress in neonatal respiratory distress syndrome. Pediatrics 147

  10. Abdelmawla M, Louis D, Narvey M, Elsayed Y (2019) A lung ultrasound severity score predicts chronic lung disease in preterm infants. Am J Perinatol 36:1357–1361

    Article  PubMed  Google Scholar 

  11. Alonso-Ojembarrena A, Lubián-López SP (2019) Lung ultrasound score as early predictor of bronchopulmonary dysplasia in very low birth weight infants. Pediatr Pulmonol 54:1404–1409

    Article  PubMed  Google Scholar 

  12. Hoshino Y, Arai J, Miura R, Takeuchi S, Yukitake Y, Kajikawa D, Kamakura T, Horigome H (2020) Lung ultrasound for predicting the respiratory outcome in patients with bronchopulmonary dysplasia. Am J Perinatol

  13. Oulego-Erroz I, Alonso-Quintela P, Terroba-Seara S, Jiménez-González A, Rodríguez-Blanco S (2021) Early assessment of lung aeration using an ultrasound score as a biomarker of developing bronchopulmonary dysplasia: a prospective observational study. J Perinatol 41:62–68

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Lv X, Jin D, Li H, Wu H (2021) Lung ultrasound predicts the development of bronchopulmonary dysplasia: a prospective observational diagnostic accuracy study. Eur J Pediatr 180:2781–2789

    Article  PubMed  Google Scholar 

  15. Mohamed A, Mohsen N, Diambomba Y, Lashin A, Louis D, Elsayed Y, Shah PS (2021) Lung ultrasound for prediction of bronchopulmonary dysplasia in extreme preterm neonates: a prospective diagnostic cohort study. J Pediatr 238:187-192.e182

    Article  PubMed  Google Scholar 

  16. Alonso-Ojembarrena A, Serna-Guerediaga I, Aldecoa-Bilbao V, Gregorio-Hernández R, Alonso-Quintela P, Concheiro-Guisán A, Ramos-Rodríguez A, de Las H-M, Rodeño-Fernández L, Oulego-Erroz I (2021) The predictive value of lung ultrasound scores in developing bronchopulmonary dysplasia: a prospective multicenter diagnostic accuracy study. Chest 160:1006–1016

    Article  PubMed  Google Scholar 

  17. Aldecoa-Bilbao V, Velilla M, Teresa-Palacio M, Esponera CB, Barbero AH, Sin-Soler M, Sanz MI, Salvia Roigés MD (2021) Lung ultrasound in bronchopulmonary dysplasia: patterns and predictors in very preterm infants. Neonatology 118:537–545

    Article  CAS  PubMed  Google Scholar 

  18. Pezza L, Alonso-Ojembarrena A, Elsayed Y, Yousef N, Vedovelli L, Raimondi F, De Luca D (2022) Meta-analysis of lung ultrasound scores for early prediction of bronchopulmonary dysplasia. Ann Am Thorac Soc 19:659–667

    Article  PubMed  Google Scholar 

  19. Loi B, Vigo G, Baraldi E, Raimondi F, Carnielli VP, Mosca F, De Luca D (2021) Lung ultrasound to monitor extremely preterm infants and predict bronchopulmonary dysplasia. A multicenter longitudinal cohort study. Am J Respir Crit Care Med 203:1398–1409

    Article  CAS  PubMed  Google Scholar 

  20. Sun YH, Yuan L, Du Y, Zhou JG, Lin SB, Zhang R, Dong Y, Chen C (2022) Characterization of lung ultrasound imaging in preterm infants with bronchopulmonary dysplasia. Clin Hemorheol Microcirc 80:83–95

    Article  CAS  PubMed  Google Scholar 

  21. Noori S, Drabu B, Soleymani S, Seri I (2012) Continuous non-invasive cardiac output measurements in the neonate by electrical velocimetry: a comparison with echocardiography. Arch Dis Child Fetal Neonatal Ed 97:F340-343

    Article  PubMed  Google Scholar 

  22. Hassan MA, Bryant MB, Hummler HD (2022) Comparison of cardiac output measurement by electrical velocimetry with echocardiography in extremely low birth weight neonates. Neonatology 119:18–25

    Article  CAS  PubMed  Google Scholar 

  23. Torigoe T, Sato S, Nagayama Y, Sato T, Yamazaki H (2015) Influence of patent ductus arteriosus and ventilators on electrical velocimetry for measuring cardiac output in very-low/low birth weight infants. J Perinatol 35:485–489

    Article  CAS  PubMed  Google Scholar 

  24. Gatelli IF, Vitelli O, Chiesa G, De Rienzo F, Martinelli S (2020) Noninvasive cardiac output monitoring in newborn with hypoplastic left heart syndrome. Am J Perinatol 37:S54–S56

    Article  PubMed  Google Scholar 

  25. Gatelli IF, Vitelli O, Fossati M, De Rienzo F, Chiesa G, Martinelli S (2021) Neonatal septic shock and hemodynamic monitoring in preterm neonates in a NICU: added value of electrical cardiometry in real-time tailoring of management and therapeutic strategies. Am J Perinatol

  26. Paviotti G, De Cunto A, Moressa V, Bettiol C, Demarini S (2017) Thoracic fluid content by electric bioimpedance correlates with respiratory distress in newborns. J Perinatol 37:1024–1027

    Article  CAS  PubMed  Google Scholar 

  27. De Luca D, van Kaam AH, Tingay DG, Courtney SE, Danhaive O, Carnielli VP, Zimmermann LJ, Kneyber MC, Tissieres P, Brierley J, Conti G, Pillow JJ, Rimensberger PC (2017) The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir Med 5:657–666

    Article  PubMed  Google Scholar 

  28. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A, Plavka R, Roehr CC, Saugstad OD, Simeoni U, Speer CP, Vento M, Visser GHA, Halliday HL (2019) European consensus guidelines on the management of respiratory distress syndrome - 2019 update. Neonatology 115:432–450

    Article  PubMed  Google Scholar 

  29. Brat R, Yousef N, Klifa R, Reynaud S, Shankar Aguilera S, De Luca D (2015) Lung ultrasonography score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure. JAMA Pediatr 169:e151797

    Article  PubMed  Google Scholar 

  30. Boet A, Jourdain G, Demontoux S, De Luca D (2016) Stroke volume and cardiac output evaluation by electrical cardiometry: accuracy and reference nomograms in hemodynamically stable preterm neonates. J Perinatol 36:748–752

    Article  CAS  PubMed  Google Scholar 

  31. Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163:1723–1729

    Article  CAS  PubMed  Google Scholar 

  32. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:8

    Article  Google Scholar 

  33. Singh Y, Tissot C, Fraga MV, Yousef N, Cortes RG, Lopez J, Sanchez-de-Toledo J, Brierley J, Colunga JM, Raffaj D, Da Cruz E, Durand P, Kenderessy P, Lang HJ, Nishisaki A, Kneyber MC, Tissieres P, Conlon TW, De Luca D (2020) International evidence-based guidelines on point of care ultrasound (POCUS) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit Care 24:65

    Article  PubMed  PubMed Central  Google Scholar 

  34. Raimondi F, Migliaro F, Corsini I, Meneghin F, Pierri L, Salomè S, Perri A, Aversa S, Nobile S, Lama S, Varano S, Savoia M, Gatto S, Leonardi V, Capasso L, Carnielli VP, Mosca F, Dani C, Vento G, Dolce P, Lista G (2021) Neonatal lung ultrasound and surfactant administration: a pragmatic, multicenter study. Chest 160:2178–2186

    Article  CAS  PubMed  Google Scholar 

  35. De Martino L, Yousef N, Ben-Ammar R, Raimondi F, Shankar-Aguilera S, De Luca D (2018) Lung ultrasound score predicts surfactant need in extremely preterm neonates. Pediatrics 142

  36. Raschetti R, Yousef N, Vigo G, Marseglia G, Centorrino R, Ben-Ammar R, Shankar-Aguilera S, De Luca D (2019) Echography-guided surfactant therapy to improve timeliness of surfactant replacement: a quality improvement project. J Pediatr 212:137-143.e131

    Article  PubMed  Google Scholar 

  37. Vardar G, Karadag N, Karatekin G (2021) The role of lung ultrasound as an early diagnostic tool for need of surfactant therapy in preterm infants with respiratory distress syndrome. Am J Perinatol 38:1547–1556

    Article  PubMed  Google Scholar 

  38. Perri A, Sbordone A, Patti ML, Nobile S, Tirone C, Giordano L, Tana M, D’Andrea V, Priolo F, Serrao F, Riccardi R, Prontera G, Maddaloni C, Lenkowicz J, Boldrini L, Vento G (2022) Early lung ultrasound score to predict noninvasive ventilation needing in neonates from 33 weeks of gestational age: a multicentric study. Pediatr Pulmonol 57:2227–2236

    Article  PubMed  Google Scholar 

  39. Perri A, Riccardi R, Iannotta R, Di Molfetta DV, Arena R, Vento G, Zecca E (2018) Lung ultrasonography score versus chest X-ray score to predict surfactant administration in newborns with respiratory distress syndrome. Pediatr Pulmonol 53:1231–1236

    Article  PubMed  Google Scholar 

  40. Raimondi F, Migliaro F, Sodano A, Ferrara T, Lama S, Vallone G, Capasso L (2014) Use of neonatal chest ultrasound to predict noninvasive ventilation failure. Pediatrics 134:e1089-1094

    Article  PubMed  Google Scholar 

  41. Soliman RM, Elsayed Y, Said RN, Abdulbaqi AM, Hashem RH, Aly H (2021) Prediction of extubation readiness using lung ultrasound in preterm infants. Pediatr Pulmonol 56:2073–2080

    Article  PubMed  Google Scholar 

  42. Mohsen N, Nasef N, Ghanem M, Yeung T, Deekonda V, Ma C, Kajal D, Baczynski M, Jain A, Mohamed A (2022) Accuracy of lung and diaphragm ultrasound in predicting successful extubation in extremely preterm infants: a prospective observational study. Pediatr Pulmonol

  43. Liang Z, Meng Q, You C, Wu B, Li X, Wu Q (2021) Roles of lung ultrasound score in the extubation failure from mechanical ventilation among premature infants with neonatal respiratory distress syndrome. Front Pediatr 9:709160

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tandircioglu UA, Yigit S, Oguz B, Kayki G, Celik HT, Yurdakok M (2022) Lung ultrasonography decreases radiation exposure in newborns with respiratory distress: a retrospective cohort study. Eur J Pediatr 181:1029–1035

    Article  PubMed  Google Scholar 

  45. Woods PL, Stoecklin B, Woods A, Gill AW (2021) Early lung ultrasound affords little to the prediction of bronchopulmonary dysplasia. Arch Dis Child Fetal Neonatal Ed 106:657–662

    Article  PubMed  Google Scholar 

  46. Hammad Y, Hasanin A, Elsakka A, Refaie A, Abdelfattah D, Rahman SA, Zayed M, Hassabelnaby Y, Mukhtar A, Omran A (2019) Thoracic fluid content: a novel parameter for detection of pulmonary edema in parturients with preeclampsia. J Clin Monit Comput 33:413–418

    Article  PubMed  Google Scholar 

  47. van de Water JM, Mount BE, Chandra KM, Mitchell BP, Woodruff TA, Dalton ML (2005) TFC (thoracic fluid content): a new parameter for assessment of changes in chest fluid volume. Am Surg 71:81–86

    Article  PubMed  Google Scholar 

  48. Hsu KH, Wu TW, Wu IH, Lai MY, Hsu SY, Huang HW, Mok TY, Lien R (2017) Electrical cardiometry to monitor cardiac output in preterm infants with patent ductus arteriosus: a comparison with echocardiography. Neonatology 112:231–237

    Article  PubMed  Google Scholar 

  49. Yoon SJ, Han JH, Cho KH, Park J, Lee SM, Park MS (2022) Tools for assessing lung fluid in neonates with respiratory distress. BMC Pediatr 22:354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Silvia Martini, Italo Gatelli, Silvia Galletti, Stefano Martinelli and Luigi Corvaglia conceived and designed the study. Data collection was performed by Italo Gatelli, Silvia Martini, Ottavio Vitelli, Federica Camela and Francesca De Rienzo. Data analysis was performed by Silvia Martini. The first draft of the manuscript was written by Silvia Martini and Italo Gatelli; Ottavio Vitelli contributed to the draft writing. Silvia Galletti, Federica Camela, Francesca De Rienzo, Stefano Martinelli and Luigi Corvaglia critically revised the manuscript. All authors have read and approved the submitted version of the manuscript.

Corresponding author

Correspondence to Silvia Martini.

Ethics declarations

Ethics approval

The study protocol was approved by the local ethic committees (Area Vasta Emilia Centro (AVEC), approval ID 092/201/Oss/AOUBo; Comitato Etico Milano Area 3, approval ID 48-12022020).

Consent to participate

The consent for participation was obtained from the parents or legal guardians of the enrolled infants.

Consent for publication

N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Daniele De Luca

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (TIF 95 KB)

Supplementary file 2 (DOCX 267 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martini, S., Gatelli, I.F., Vitelli, O. et al. Prediction of respiratory distress severity and bronchopulmonary dysplasia by lung ultrasounds and transthoracic electrical bioimpedance. Eur J Pediatr 182, 1039–1047 (2023). https://doi.org/10.1007/s00431-022-04764-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-022-04764-6

Keywords

Navigation