Skip to main content

Advertisement

Log in

Prognostic value of somatosensory-evoked potentials in the newborn with hypoxic-ischemic encephalopathy after the introduction of therapeutic hypothermia

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

To establish the ability of somatosensory-evoked potentials (SEPs) to detect neurological damage in neonatal patients with hypoxic-ischemic encephalopathy (HIE) treated with therapeutic hypothermia (TH). Retrospective study including 84 neonates ≥ 36 weeks of gestational age with HIE and TH with SEPs performed in the first 14 days of life. SEPs from the median nerve were performed after completion of TH. Either unilateral or bilateral absence of N20, or unilateral or bilateral latency ≥ 36 ms, was considered pathological. All newborns underwent a cerebral resonance imaging (MRI) at between days 7 and 14 of life and a neurodevelopmental evaluation using the Brunet-Lezine test at two years of age; a global Brunet-Lezine test score < 70 was considered unfavorable. The risk of moderate-to-severe alteration on basal ganglia–thalamic (BGT) and/or white matter areas on MRI for pathological SEPs was as follows: odds ratio 95% IC: 23.1 (6.9–76.9), sensitivity 78.6%, specificity 86.3%, positive predictive value 75.9%, and negative predictive value 88%. The BGT and internal capsule were the areas with the greatest risk of lesion with an altered SEPs: odds ratio 95% IC 93.1 (11.1–777.8). The risk of neurodevelopmental impairment for pathological SEPs was odds ratio 95% IC: 38.5 (4.4–335.3), sensitivity 91.7%, specificity 77.8% positive predictive value 52.4%, and negative predictive value 97.2%.

Conclusion: The present study demonstrates the good predictive capacity of SEPs performed in the first two weeks of life in newborns with HIE and TH to detect an increased risk of neuroimaging lesions and neurodevelopmental impairment at two years of age.

What is Known:

• Bilateral absence of the N20 cortical component of somatosensory evoked potentials has been associated with poor neurological outcome in neonates with hypoxic-ischemic encephalopathy.

What is New:

• This work confirms the predictive capacity of SEPs by adding two important aspects: the value of latency when interpreting SEPs results and the absence of effect of the hypothermia method used on the results of SEPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

The data are under the custody of the principal investigator.

Abbreviations

aEEG:

Amplitude integrated electroencephalography

BGT:

Basal ganglia–thalamic area

CS:

Cerebral selective hypothermia

Sp:

Specificity

HIE:

Hypoxic-ischemic encephalopathy

IC:

Internal capsule

MRI:

Magnetic resonance imaging

NPV :

Negative predictive value

PPV :

Positive predictive value

S:

Sensitivity

SEPs:

Somatosensory-evoked potentials

TH:

Therapeutic hypothermia

WB:

Whole body hypothermia

WM:

White matter

VEPs:

Visual evoked potentials

References

  1. Tagin MA, Woolcott CG, Vincer MJ, Whyte RK, Stinson DA (2012) Hypothermia for neonatal hypoxic ischemic encephalopathy: an updated systematic review and meta-analysis. Arch Pediatr Adolesc Med 166(6):558–566

    Article  PubMed  Google Scholar 

  2. Azzopardi D, Strohm B, Marlow N, Brocklehurst P, Deierl A, Eddama O et al (2014) Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med 371(2):140–149

    Article  CAS  PubMed  Google Scholar 

  3. Edwards AD, Brocklehurst P, Gunn AJ, Halliday H, Juszczak E, Levene M et al (2010) Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 340:c363

    Article  PubMed  PubMed Central  Google Scholar 

  4. Laptook AR, Shankaran S, Ambalavanan N, Carlo WA, McDonald SA, Higgins RD et al (2009) Outcome of term infants using apgar scores at 10 minutes following hypoxic-ischemic encephalopathy. Pediatrics 124(6):1619–1626

    Article  PubMed  Google Scholar 

  5. Natarajan G, Shankaran S, Laptook AR, Pappas A, Bann CM, McDonald SA et al (2013) Apgar scores at 10 min and outcomes at 6–7 years following hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 98(6):F473–F479

    Article  PubMed  Google Scholar 

  6. Shah P, Anvekar A, McMichael J, Rao S (2015) Outcomes of infants with Apgar score of zero at 10 min: the West Australian experience. Arch Dis Child Fetal Neonatal Ed 100(6):F492–F494

    Article  PubMed  Google Scholar 

  7. Gunn AJ, Wyatt JS, Whitelaw A, Barks J, Azzopardi D, Ballard R et al (2008) Therapeutic hypothermia changes the prognostic value of clinical evaluation of neonatal encephalopathy. Journal Pediatr 152(1):55–58

    Article  Google Scholar 

  8. Shankaran S, Laptook AR, Tyson JE, Ehrenkranz RA, Bann CM, Das A et al (2012) Evolution of encephalopathy during whole body hypothermia for neonatal hypoxic-ischemic encephalopathy. J Pediatr 160(4):567–572

    Article  PubMed  Google Scholar 

  9. Del Rio R, Ochoa C, Alarcon A, Arnaez J, Blanco D, Garcia-Alix A (2016) Amplitude integrated electroencephalogram as a prognostic tool in neonates with hypoxic-ischemic encephalopathy: a systematic review. PloS One 11(11):e0165744

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thoresen M, Hellstrom-Westas L, Liu X, de Vries LS (2010) Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 126(1):e131–e139

    Article  PubMed  Google Scholar 

  11. Chandrasekaran M, Chaban B, Montaldo P, Thayyil S (2017) Predictive value of amplitude-integrated EEG (aEEG) after rescue hypothermic neuroprotection for hypoxic ischemic encephalopathy: a meta-analysis. J Perinatol 37(6):684–689

    Article  CAS  PubMed  Google Scholar 

  12. Elstad M, Whitelaw A, Thoresen M (2011) Cerebral Resistance Index is less predictive in hypothermic encephalopathic newborns. Acta Paediatr 100(10):1344–1349

    Article  PubMed  Google Scholar 

  13. Skranes JH, Elstad M, Thoresen M, Cowan FM, Stiris T, Fugelseth D (2014) Hypothermia makes cerebral resistance index a poor prognostic tool in encephalopathic newborns. Neonatology 106(1):17–23

    Article  CAS  PubMed  Google Scholar 

  14. Rutherford M, Malamateniou C, McGuinness A, Allsop J, Biarge MM, Counsell S (2010) Magnetic resonance imaging in hypoxic-ischaemic encephalopathy. Early Hum Dev 86(6):351–360

    Article  PubMed  Google Scholar 

  15. Sanchez Fernandez I, Morales-Quezada JL, Law S, Kim P (2017) Prognostic value of brain magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy: a meta-analysis. J Child Neurol 32(13):1065–1073

    Article  PubMed  Google Scholar 

  16. Cheong JL, Coleman L, Hunt RW, Lee KJ, Doyle LW, Inder TE et al (2012) Prognostic utility of magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy: substudy of a randomized trial. Arch Pediatr Adolesc Med 166(7):634–640

    Article  PubMed  Google Scholar 

  17. Ancora G, Maranella E, Grandi S, Sbravati F, Coccolini E, Savini S et al (2013) Early predictors of short term neurodevelopmental outcome in asphyxiated cooled infants A combined brain amplitude integrated electroencephalography and near infrared spectroscopy study. Brain Dev 35(1):26–31

    Article  PubMed  Google Scholar 

  18. Lemmers PM, Zwanenburg RJ, Benders MJ, de Vries LS, Groenendaal F, van Bel F et al (2013) Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value? Pediatr Res 74(2):180–185

    Article  CAS  PubMed  Google Scholar 

  19. Wintermark P, Hansen A, Warfield SK, Dukhovny D, Soul JS (2014) Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neuroimage 85(Pt 1):287–293

    Article  CAS  PubMed  Google Scholar 

  20. Peng S, Boudes E, Tan X, Saint-Martin C, Shevell M, Wintermark P (2015) Does near-infrared spectroscopy identify asphyxiated newborns at risk of developing brain injury during hypothermia treatment? Am J Perinatol 32(6):555–564

    Article  PubMed  Google Scholar 

  21. Jain SV, Pagano L, Gillam-Krakauer M, Slaughter JC, Pruthi S, Engelhardt B (2017) Cerebral regional oxygen saturation trends in infants with hypoxic-ischemic encephalopathy. Early Hum Dev 113:55–61

    Article  CAS  PubMed  Google Scholar 

  22. Arriaga-Redondo M, Arnaez J, Benavente-Fernandez I, Lubian-Lopez S, Hortiguela M, Vega-Del-Val C et al (2019) Lack of variability in cerebral oximetry tendency in infants with severe hypoxic-ischemic encephalopathy under hypothermia. Ther Hypothermia Temp Manag 9(4):243–250

    Article  PubMed  Google Scholar 

  23. De Vries LS, Pierrat V, Eken P, Minami T, Daniels H, Casaer P (1991) Prognostic value of early somatosensory evoked potentials for adverse outcome in full-term infants with birth asphyxia. Brain Dev 13(5):320–325

    Article  PubMed  Google Scholar 

  24. Eken P, Toet MC, Groenendaal F, de Vries LS (1995) Predictive value of early neuroimaging, pulsed Doppler and neurophysiology in full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 73(2):F75–F80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor MJ, Murphy WJ, Whyte HE (1992) Prognostic reliability of somatosensory and visual evoked potentials of asphyxiated term infants. Dev Med Child Neurol 34(6):507–515

    Article  CAS  PubMed  Google Scholar 

  26. Swarte RM, Cherian PJ, Lequin M, Visser GH, Govaert P (2012) Somatosensory evoked potentials are of additional prognostic value in certain patterns of brain injury in term birth asphyxia. Clin Neurophysiol 123(8):1631–1638

    Article  PubMed  Google Scholar 

  27. Suppiej A, Cappellari A, Franzoi M, Traverso A, Ermani M, Zanardo V (2010) Bilateral loss of cortical somatosensory evoked potential at birth predicts cerebral palsy in term and near-term newborns. Early Hum Dev 86(2):93–98

    Article  CAS  PubMed  Google Scholar 

  28. Gibson NA, Graham M, Levene MI (1992) Somatosensory evoked potentials and outcome in perinatal asphyxia. Arch Dis Child 67(4 Spec No):393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garfinkle J, Sant’Anna GM, Rosenblatt B, Majnemer A, Wintermark P, Shevell MI (2015) Somatosensory evoked potentials in neonates with hypoxic-ischemic encephalopathy treated with hypothermia. Eur J Paediatr Neurol 19(4):423–428

    Article  PubMed  Google Scholar 

  30. Nevalainen P, Marchi V, Metsaranta M, Lonnqvist T, Toiviainen-Salo S, Vanhatalo S et al (2017) Evoked potentials recorded during routine EEG predict outcome after perinatal asphyxia. Clin Neurophysiol 128(7):1337–1343

    Article  PubMed  Google Scholar 

  31. Cainelli E, Trevisanuto D, Cavallin F, Manara R, Suppiej A (2018) Evoked potentials predict psychomotor development in neonates with normal MRI after hypothermia for hypoxic-ischemic encephalopathy. Clin Neurophysiol 129(6):1300–1306

    Article  PubMed  Google Scholar 

  32. Nevalainen P, Marchi V, Metsaranta M, Lonnqvist T, Vanhatalo S, Lauronen L (2018) Evaluation of SEPs in asphyxiated newborns using a 4-electrode aEEG brain monitoring set-up. Clin Neurophysiol Pract 3:122–126

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nevalainen P, Metsaranta M, Marchi V, Toiviainen-Salo S, Vanhatalo S, Lauronen L (2021) Towards multimodal brain monitoring in asphyxiated newborns with amplitude-integrated EEG and simultaneous somatosensory evoked potentials. Early Hum Dev 153:105287

    Article  PubMed  Google Scholar 

  34. Nevalainen P, Lauronen L, Metsaranta M, Lonnqvist T, Ahtola E, Vanhatalo S (2017) Neonatal somatosensory evoked potentials persist during hypothermia. Acta Paediatr 106(6):912–917

    Article  PubMed  Google Scholar 

  35. Suppiej A, Cappellari A, Talenti G, Cainelli E, Di Capua M, Janes A et al (2018) Bilateral loss of cortical SEPs predict severe MRI lesions in neonatal hypoxic ischemic encephalopathy treated with hypothermia. Clin Neurophysiol 129(1):95–100

    Article  PubMed  Google Scholar 

  36. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress A clinical and electroencephalographic study. Arch Neurol 33(10):696–705

    Article  CAS  PubMed  Google Scholar 

  37. Carreras N, Alsina M, Alarcon A, Arca-Diaz G, Agut T, Garcia-Alix A (2018) Efficacy of passive hypothermia and adverse events during transport of asphyxiated newborns according to the severity of hypoxic-ischemic encephalopathy. J Pediatr 94(3):251–257

    Article  Google Scholar 

  38. George SR, Taylor MJ (1991) Somatosensory evoked potentials in neonates and infants: developmental and normative data. Electroencephalogr Clin Neurophysiol 80(2):94–102

    Article  CAS  PubMed  Google Scholar 

  39. Martinez-Biarge M, Diez-Sebastian J, Rutherford MA, Cowan FM (2010) Outcomes after central grey matter injury in term perinatal hypoxic-ischaemic encephalopathy. Early Hum Dev 86(11):675–682

    Article  PubMed  Google Scholar 

  40. Martinez-Biarge M, Blanco D, Garcia-Alix A, Salas S, Grupo de Trabajo de Hipotermia de la Sociedad Española de Neonatología (2014) Follow-up of newborns with hypoxic-ischaemic encephalopathy. An Pediatr 81(1):52.e1–14

    Google Scholar 

  41. de Vries LS (1993) Somatosensory-evoked potentials in term neonates with postasphyxial encephalopathy. Clin Perinatol 20(2):463–482

    Article  PubMed  Google Scholar 

  42. Suppiej A (2007) General characteristics of evoked potentials. Neonatal Paediatr Clin Neurophysiol 111–154

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.B.B. and M.A.R. designed the study. M.A.R., A.A.H., A.P.A., and Y.R.M. participated in the acquisition of the data. M.A.R. carried out the analysis. M.A.R., D.B.B., M.S.L., A.A.H., and A.P.A contributed to the interpretation of the data. M.A.R. wrote the article and D.B.B., M.S.L., A.A.H., and A.P.A revised it critically. All the authors approved the final version of the manuscript to be published and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to María Arriaga-Redondo.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committee of the Hospital.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Daniele De Luca

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arriaga-Redondo, M., Bravo, D.B., del Hoyo, A.A. et al. Prognostic value of somatosensory-evoked potentials in the newborn with hypoxic-ischemic encephalopathy after the introduction of therapeutic hypothermia. Eur J Pediatr 181, 1609–1618 (2022). https://doi.org/10.1007/s00431-021-04336-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-021-04336-0

Keywords

Navigation