Skip to main content
Log in

Composition of urinary stones in children: clinical and metabolic determinants in a French tertiary care center

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

As the epidemiology of urolithiasis is constantly evolving, analyzing the composition of stones is crucial to better understand the determinants of lithogenesis. The aim of this study was to describe the composition of stones of pediatric patients in a tertiary center. Clinical and metabolic data from all pediatric patients with at least one stone that was analyzed by Fourier transformed infrared spectroscopy (FTIR) in the Hospices Civils de Lyon between 2013 and 2017 were retrospectively collected. A total of 111 patients (sex ratio 1.4:1) were included; their median ([IQR]) age was 7.5 (3.1–10.5) years. The main component of stones was calcium oxalate (weddellite for 34 (31%) stones, whewellite 23 (21%)), calcium phosphate (carbapatite 32 (29%), brushite 6 (5%), amorphous calcium phosphate 3 (3%)), struvite 5 (5%), cystine 4 (4%), uric acid 2 (2%), and ammonium acid urate 2 (2%). A total of 20 (18%) stones were pure and 24 (22%) were infectious. Carbapatite stones were the most frequent in patients < 2 years and calcium oxalate stones in patients > 2 years old. Metabolic abnormalities (most frequently hypercalciuria) were found in 50% of tested patients and in 54% of patients with infectious stones. Congenital anomalies of the kidney and/or urinary tract (CAKUT) or neurogenic bladder were present in 9/24 (38%) patients with infectious stones and 12/16 (76%) patients with bladder stones.

Conclusion: This study confirms that calcium oxalate stones are the most frequent among pediatric patients, which could reflect the nutritional habits of predisposed patients. In contrast, infectious stones are less frequent and occur mostly in association with anatomic or metabolic favoring factors.

What is Known:

Incidence of kidney stones is increasing among children.

Composition of kidney stones in children is constantly evolving under the influence of genetic, nutritional, environmental, and infectious factors.

What is New:

Infectious stones are less frequent and occur mostly in case of associated anatomic or metabolic factors, particularly in older patients.

Stone composition and accurate metabolic analysis are guiding genetic screening in suggestive situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author.

Code availability

Not applicable

Abbreviations

1-25OH-D :

1-25 Dihydroxyvitamin D

25OH-D :

25 Hydroxyvitamin D

AAU :

Ammonium acid urate

ACP :

Amorphous calcium phosphate

CAKUT :

Congenital abnormality of kidney and/or urinary tract

CKD :

Chronic kidney disease

eGFR:

Estimate glomerular filtration rate

FTIR :

Fourier transformed infrared spectroscopy

HCL :

Hospices Civils de Lyon

IQR:

Interquartile range

PTH:

Parathyroid hormone

UTI :

Urinary tract infection

UUT :

Upper urinary tract

References

  1. Cloutier J, Villa L, Traxer O, Daudon M (2015) Kidney stone analysis: “give me your stone, I will tell you who you are!”. World J Urol 33(2):157–169

    Article  PubMed  Google Scholar 

  2. Ratkalkar VN, Kleinman JG (2011) Mechanisms of stone formation. Clin Rev Bone Miner Metab 9(3–4):187–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. López M, Hoppe B (2010) History, epidemiology and regional diversities of urolithiasis. Pediatr Nephrol 25(1):49–59

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tasian GE, Ross ME, Song L, Sas DJ, Keren R, Denburg MR, Chu DI, Copelovitch L, Saigal CS, Furth SL (2016) Annual incidence of nephrolithiasis among children and adults in South Carolina from 1997 to 2012. Clin J Am Soc Nephrol 11(3):488–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sas DJ, Hulsey TC, Shatat IF, Orak JK (2010) Increasing incidence of kidney stones in children evaluated in the emergency department. J Pediatr 157(1):132–137

    Article  PubMed  Google Scholar 

  6. Braun DA, Lawson JA, Gee HY, Halbritter J, Shril S, Tan W, Stein D, Wassner AJ, Ferguson MA, Gucev Z, Fisher B, Spaneas L, Varner J, Sayer JA, Milosevic D, Baum M, Tasic V, Hildebrandt F (2016) Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. CJASN 11(4):664–672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Denburg MR, Koepsell K, Lee J-J, Gerber J, Bittinger K, Tasian GE (2020) Perturbations of the gut microbiome and metabolome in children with calcium oxalate kidney stone disease. J Am Soc Nephrol 7

  8. Hernandez JD, Ellison JS, Lendvay TS (2015) Current trends, evaluation, and management of pediatric nephrolithiasis. JAMA Pediatr 169(10):964–970

    Article  PubMed  Google Scholar 

  9. Tasian GE, Kabarriti AE, Kalmus A, Furth SL (2017) Kidney stone recurrence among children and adolescents. J Urol 197(1):246–252

    Article  PubMed  Google Scholar 

  10. Rule AD, Bergstralh EJ, Melton LJ, Li X, Weaver AL, Lieske JC (2009) Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol 4(4):804–811

    Article  PubMed  PubMed Central  Google Scholar 

  11. Daudon M, Traxer O, Lechevallier E, Saussine C (2008) Epidemiology of urolithiasis. Prog Urol 18(12):802–814

    Article  PubMed  CAS  Google Scholar 

  12. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20(3):629–637

    Article  PubMed  PubMed Central  Google Scholar 

  13. Matos V, Van Melle G, Werner D, Bardy D, Guignard JP (1999) Urinary oxalate and urate to creatinine ratios in a healthy pediatric population. Am J Kidney Dis 34(2):e1

    Article  PubMed  CAS  Google Scholar 

  14. Kirejczyk JK, Porowski T, Konstantynowicz J, Kozerska A, Nazarkiewicz A, Hoppe B, Wasilewska A (2014) Urinary citrate excretion in healthy children depends on age and gender. Pediatr Nephrol 29(9):1575–1582

    Article  PubMed  PubMed Central  Google Scholar 

  15. Matos V, van Melle G, Boulat O, Markert M, Bachmann C, Guignard JP (1997) Urinary phosphate/creatinine, calcium/creatinine, and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr 131(2):252–257

    Article  PubMed  CAS  Google Scholar 

  16. Brodehl J, Gellissen K, Weber HP (1982) Postnatal development of tubular phosphate reabsorption. Clin Nephrol 17(4):163–171

    PubMed  CAS  Google Scholar 

  17. Pastore A, Massoud R, Motti C, Russo AL, Fucci G, Cortese C, Federici G (1998) Fully automated assay for total homocysteine, cysteine, cysteinylglycine, glutathione, cysteamine, and 2-mercaptopropionylglycine in plasma and urine. Clin Chem 44(4):825–832

    Article  PubMed  CAS  Google Scholar 

  18. Knoll T, Zöllner A, Wendt-Nordahl G, Michel MS, Alken P (2005) Cystinuria in childhood and adolescence: recommendations for diagnosis, treatment, and follow-up. Pediatr Nephrol 20(1):19–24

    Article  PubMed  Google Scholar 

  19. Daudon M, Dessombz A, Frochot V, Letavernier E, Haymann J-P, Jungers P, Bazin D (2016) Comprehensive morpho-constitutional analysis of urinary stones improves etiological diagnosis and therapeutic strategy of nephrolithiasis. Comptes Rendus Chimie 19(11):1470–1491

    Article  CAS  Google Scholar 

  20. Sas DJ (2011) An Update on the changing epidemiology and metabolic risk factors in pediatric kidney stone disease. CJASN 6(8):2062–2068

    Article  PubMed  Google Scholar 

  21. Aggour A, Ziada AM, AbdelHamid AZ, AbdelRahman S, Morsi A (2009) Metabolic stone composition in Egyptian children. J Pediatr Urol 5(2):132–135

    Article  PubMed  Google Scholar 

  22. Imran K, Zafar MN, Fatima N, Ozair U, Sultan S, Hasan Rizvi SA (2017) Chemical composition of stones in paediatric urolithiasis. J Ayub Med Coll Abbottabad 29(4):630–634

    PubMed  Google Scholar 

  23. Robinson C, Shenoy M, Hennayake S (2020) No stone unturned: the epidemiology and outcomes of paediatric urolithiasis in Manchester. United Kingdom J Pediatr Urol 19

  24. Sas DJ, Becton LJ, Tutman J, Lindsay LA, Wahlquist AH (2016) Clinical, demographic, and laboratory characteristics of children with nephrolithiasis. Urolithiasis 44(3):241–246

    Article  PubMed  CAS  Google Scholar 

  25. Sakhaee K, Harvey JA, Padalino PK, Whitson P, Pak CY (1993) The potential role of salt abuse on the risk for kidney stone formation. J Urol 150(2 Pt 1):310–312

    Article  PubMed  CAS  Google Scholar 

  26. Giannini S, Nobile M, Sartori L, Dalle Carbonare L, Ciuffreda M, Corrò P et al (1999) Acute effects of moderate dietary protein restriction in patients with idiopathic hypercalciuria and calcium nephrolithiasis. Am J Clin Nutr 69(2):267–271

    Article  PubMed  CAS  Google Scholar 

  27. Taylor EN, Curhan GC (2008) Fructose consumption and the risk of kidney stones. Kidney Int 73(2):207–212

    Article  PubMed  CAS  Google Scholar 

  28. Gabrielsen JS, Laciak RJ, Frank EL, McFadden M, Bates CS, Oottamasathien S, Hamilton BD, Wallis MC (2012) Pediatric urinary stone composition in the United States. J Urol 187(6):2182–2187

    Article  PubMed  Google Scholar 

  29. Bianchi L, Gaiani F, Bizzarri B, Minelli R, Cortegoso Valdivia P, Leandro G et al (2018) Renal lithiasis and inflammatory bowel diseases, an update on pediatric population. Acta Biomed 17(899-S):76–80

    Google Scholar 

  30. Tasian GE, Jemielita T, Goldfarb DS, Copelovitch L, Gerber JS, Wu Q, Denburg MR (2018) Oral antibiotic exposure and kidney stone disease. J Am Soc Nephrol 29(6):1731–1740

    Article  PubMed  PubMed Central  Google Scholar 

  31. Soliman NA, Rizvi SAH (2017) Endemic bladder calculi in children. Pediatr Nephrol 32(9):1489–1499

    Article  PubMed  Google Scholar 

  32. Zafar MN, Ayub S, Tanwri H, Naqvi SAA, Rizvi SAH (2018) Composition of urinary calculi in infants: a report from an endemic country. Urolithiasis 46(5):445–452

    Article  PubMed  CAS  Google Scholar 

  33. Defoor W, Asplin J, Jackson E, Jackson C, Reddy P, Sheldon C et al (2005) Results of a prospective trial to compare normal urine supersaturation in children and adults. J Urol 174(4 Pt 2):1708–1710

    Article  PubMed  CAS  Google Scholar 

  34. Eggermann T, Venghaus A, Zerres K (2012) Cystinuria: an inborn cause of urolithiasis. Orphanet J Rare Diseases 7:19

    Article  Google Scholar 

  35. Cochat P, Rumsby G (2013) Primary hyperoxaluria. N Engl J Med 369(7):649–658

    Article  PubMed  CAS  Google Scholar 

  36. Devuyst O, Thakker RV (2010) Dent’s disease. Orphanet J Rare Dis 5:28

    Article  PubMed  PubMed Central  Google Scholar 

  37. Halbritter J, Baum M, Hynes AM, Rice SJ, Thwaites DT, Gucev ZS, Fisher B, Spaneas L, Porath JD, Braun DA, Wassner AJ, Nelson CP, Tasic V, Sayer JA, Hildebrandt F (2015) Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J Am Soc Nephrol 26(3):543–551

    Article  PubMed  CAS  Google Scholar 

  38. Dasgupta D, Wee MJ, Reyes M, Li Y, Simm PJ, Sharma A, Schlingmann KP, Janner M, Biggin A, Lazier J, Gessner M, Chrysis D, Tuchman S, Baluarte HJ, Levine MA, Tiosano D, Insogna K, Hanley DA, Carpenter TO, Ichikawa S, Hoppe B, Konrad M, Sävendahl L, Munns CF, Lee H, Jüppner H, Bergwitz C (2014) Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J Am Soc Nephrol 25(10):2366–2375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yang D, Tiselius H-G, Lan C, Chen D, Chen K, Ou L, Liu Y, Xu S, Zeng G, Lei M, Wu W (2017) Metabolic disturbances in Chinese children with urolithiasis: a single center report. Urolithiasis. 45(3):285–290

    Article  PubMed  CAS  Google Scholar 

  40. Ghazali S, Barratt TM, Williams DI (1973) Childhood urolithiasis in Britain. Arch Dis Child 48(4):291–295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Coward RJM, Peters CJ, Duffy PG, Corry D, Kellett MJ, Choong S, van't Hoff W (2003) Epidemiology of paediatric renal stone disease in the UK. Arch Dis Child 88(11):962–965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Li Z, Chen Y, Qiu L, Chen D, Hu C, Xu J, Zhang XH (2019) Prevalence, types, and malformations in congenital anomalies of the kidney and urinary tract in newborns: a retrospective hospital-based study. Ital J Pediatr 45(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  43. Alpay H, Ozen A, Gokce I, Biyikli N (2009) Clinical and metabolic features of urolithiasis and microlithiasis in children. Pediatr Nephrol 24(11):2203–2209

    Article  PubMed  Google Scholar 

  44. Amancio L, Fedrizzi M, Bresolin NL, MGMG P (2019) Pediatric urolithiasis: experience at a tertiary care pediatric hospital. Jornal Brasileiro de Nefrologia 38:1. https://doi.org/10.5935/0101-2800.20160014

    Article  Google Scholar 

  45. Szymanski KM, Misseri R, Whittam B, Lingeman JE, Amstutz S, Ring JD et al (2016) Bladder stones after bladder augmentation are not what they seem. J Pediatr Urol 98(2):e1–e6

    Google Scholar 

  46. Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T (2016) EAU Guidelines on interventional treatment for urolithiasis. Eur Urol 69(3):475–482

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CR, CM, JB and ABT contributed to the conception of the work. CM made spectrophotometry analyses. LD made biological analyses and extracted the biological data. CR collected clinical/biological data and wrote the manuscript with support of JB and ABT. JB made statisical analyses. All authors revised it critically and approved the version to be published.

Corresponding author

Correspondence to Camille Rauturier.

Ethics declarations

Ethics approval

This retrospective and strictly observational study was approved by the local IRB (Comité d’Ethique des Hospices Civils de Lyon, session 6/7/2018).

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Gregorio Paolo Milani

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauturier, C., Machon, C., Demède, D. et al. Composition of urinary stones in children: clinical and metabolic determinants in a French tertiary care center. Eur J Pediatr 180, 3555–3563 (2021). https://doi.org/10.1007/s00431-021-04151-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-021-04151-7

Keywords

Navigation