Skip to main content

Advertisement

Log in

Recent approaches in clinical applications of 3D printing in neonates and pediatrics

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Neonates and pediatric populations are vulnerable subjects in terms of health. Proper screening and early optimal treatment would reduce infant and child mortality, improving the quality of life. Researchers and clinicians all over the world are in pursuit of innovations to improve the medical care delivery system. Infant morphometrics changes drastically due to the rapid somatic growth in infancy and childhood, demanding for patient-specific customization of treatment intervention accordingly. 3D printing is a radical technology that allows the generation of physical 3D products from digital images and addresses the patient-specific requirement. The combination of cost-effective and on-demand customization offers a boundless opportunity for the enhancement of neonates and pediatric health.

Conclusion: The advanced technology of 3D printing proposes a pioneering breakthrough in bringing physiologically and anatomically appropriate treatment strategies addressing the unmet needs of child health problems.

What is Known:

The potential application of 3D printing is observed across a multitude of fields within medicine and surgery.

The unprecedented effect of this technology on pediatric healthcare is still very much a work in progress.

What is New:

The recent clinical applications of 3D printing provide better treatment modalities to infants and children.

The review provides an overview of the comparison between conventional treatment methods and 3DP regarding specific applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3DP:

3 dimensional printing

CADD:

Computer-aided design and drafting

CPAP:

Continuous positive airway pressure

CT:

Computed tomography

DICOM:

Digital image and communication in medicine

FDM:

Fusion deposition modeling

MRI:

Magnetic resonance imaging

References

  1. WHO. Newborns: reducing mortality. World Heal Organ 2018. 28, September 2018.

  2. Pathirana J, Muñoz FM, Abbing-Karahagopian V, Bhat N, Harris T, Kapoor A, Keene DL, Mangili A, Padula MA, Pande SL, Pool V, Pourmalek F, Varricchio F, Kochhar S, Cutland CL, Brighton Collaboration Neonatal Death Working Group (2016) Neonatal death: Case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 34:6027–6037. https://doi.org/10.1016/j.vaccine.2016.03.040

    Article  PubMed  PubMed Central  Google Scholar 

  3. ur S, El W. Neonatal mortality: incidence, correlates and improvement strategies. Perinat. Mortal., 2012. 10.5772/45749.

  4. Dimitri P (2019) Child health technology: Shaping the future of paediatrics and child health and improving NHS productivity. Arch Dis Child 104:184–188. https://doi.org/10.1136/archdischild-2017-314309

    Article  PubMed  Google Scholar 

  5. Konuş ÖL, Özdemir A, Akkaya A, Erbaş G, Çelik H, Işik S (1998) Normal liver, spleen, and kidney dimensions in neonates, infants, and children: evaluation with sonography. Am J Roentgenol 171:1693–1698. https://doi.org/10.2214/ajr.171.6.9843315

    Article  Google Scholar 

  6. Hornick J, Roland D. Many 3D printing patents are expiring soon: here’s a round up & overview of them - 3d printing industry. [Online] 3dprintingindustry 2013.

  7. Ventola CL (2014) Medical applications for 3d printing: current and projected uses. P T

  8. Rath SN, Sankar S (2017) 3D printers for surgical practice. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100717-4.00009-0

  9. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  10. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M (2018) 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater 3:144–156. https://doi.org/10.1016/j.bioactmat.2017.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30:2563–2567. https://doi.org/10.1016/j.jeurceramsoc.2010.04.037

    Article  CAS  Google Scholar 

  12. Eswaramoorthy SD, Ramakrishna S, Rath SN (2019) Recent advances in three-dimensional bioprinting of stem cells. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2839

  13. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13:2634–2639. https://doi.org/10.1021/nl4007744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20:473–484. https://doi.org/10.1089/ten.tec.2013.0335

    Article  CAS  PubMed  Google Scholar 

  15. Dawood A, Marti BM, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219:521–529. https://doi.org/10.1038/sj.bdj.2015.914

    Article  CAS  PubMed  Google Scholar 

  16. Tan Y, Richards DJ, Trusk TC, Visconti RP, Yost MJ, Kindy MS, Drake CJ, Argraves WS, Markwald RR, Mei Y (2014) 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6:024111. https://doi.org/10.1088/1758-5082/6/2/024111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Isaacson A, Swioklo S, Connon CJ (2018) 3D bioprinting of a corneal stroma equivalent. Exp Eye Res 173:188–193. https://doi.org/10.1016/j.exer.2018.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun Y, Soh S (2015) Printing tablets with fully customizable release profiles for personalized medicine. Adv Mater 27:7847–7853. https://doi.org/10.1002/adma.201504122

    Article  CAS  PubMed  Google Scholar 

  19. Xu Y, Wu X, Guo X, Kong B, Zhang M, Qian X, Mi S, Sun W (2017) The boom in 3D-printed sensor technology. Sensors (Basel) 17. https://doi.org/10.3390/s17051166

  20. Sánchez-Sánchez Á, Girón-Vallejo Ó, Ruiz-Pruneda R, Fernandez-Ibieta M, García-Calderon D, Villamil V, Giménez-Aleixandre M, Montoya-Rangel C, Hernández Bermejo J (2018) Three-dimensional printed model and virtual reconstruction: an extra tool for pediatric solid tumors surgery. Eur J Pediatr Surg Reports 06:e70–e76. https://doi.org/10.1055/s-0038-1672165

    Article  Google Scholar 

  21. Perlman JM, Wyllie J, Kattwinkel J, Wyckoff MH, Aziz K, Guinsburg R, Kim HS, Liley HG, Mildenhall L, Simon WM, Szyld E, Tamura M, Velaphi S, on behalf of the Neonatal Resuscitation Chapter Collaborators (2015) Part 7: Neonatal resuscitation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 132:S204–S241. https://doi.org/10.1161/CIR.0000000000000276

    Article  PubMed  Google Scholar 

  22. Agrawal, Lakshminrusimha, Chandrasekharan. Chest compressions for bradycardia during neonatal resuscitation—do we have evidence? Children 2019. https://doi.org/10.3390/children6110119.

  23. Thielen M, Delbressine F, Bambang Oetomo S, Feijs L (2019) Anatomically realistic neonatal heart model for use in neonatal patient simulators. J Vis Exp. https://doi.org/10.3791/56710

  24. Soejima Y, Taguchi T, Sugimoto M, Hayashida M, Yoshizumi T, Ikegami T, Uchiyama H, Shirabe K, Maehara Y (2016) Three-dimensional printing and biotexture modeling for preoperative simulation in living donor liver transplantation for small infants. Liver Transpl 22:1610–1614. https://doi.org/10.1002/lt.24516

    Article  PubMed  Google Scholar 

  25. Kreutzer J, Perry SB, Jonas RA, Mayer JE, Castañeda AR, Lock JE (1996) Tetralogy of Fallot with diminutive pulmonary arteries: preoperative pulmonary valve dilation and transcatheter rehabilitation of pulmonary arteries. J Am Coll Cardiol 27:1741–1747. https://doi.org/10.1016/0735-1097(96)00044-7

    Article  CAS  PubMed  Google Scholar 

  26. Anwar S, Singh GK, Varughese J, Nguyen H, Billadello JJ, Sheybani EF, Woodard PK, Manning P, Eghtesady P (2017) 3D Printing in complex congenital heart disease: across a spectrum of age, pathology, and imaging techniques. JACC Cardiovasc Imaging 10:953–956. https://doi.org/10.1016/j.jcmg.2016.03.013

    Article  PubMed  Google Scholar 

  27. Costello JP, Olivieri LJ, Su L, Krieger A, Alfares F, Thabit O, Marshall MB, Yoo SJ, Kim PC, Jonas RA, Nath DS (2015) Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 10:185–190. https://doi.org/10.1111/chd.12238

    Article  PubMed  Google Scholar 

  28. Weinstock P, Rehder R, Prabhu SP, Forbes PW, Roussin CJ, Cohen AR (2017) Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. J Neurosurg Pediatr 20:1–9. https://doi.org/10.3171/2017.1.PEDS16568

    Article  PubMed  Google Scholar 

  29. Han HW, Hsu SH (2017) Using 3D bioprinting to produce mini-brain. Neural Regen Res 12:1595–1596. https://doi.org/10.4103/1673-5374.217325

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bücking TM, Hill ER, Robertson JL, Maneas E, Plumb AA, Nikitichev DI (2017) From medical imaging data to 3D printed anatomical models. PLoS One 12:e0178540. https://doi.org/10.1371/journal.pone.0178540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abramowicz JS, Barnett SB, Duck FA, Edmonds PD, Hynynen KH, Ziskin MC. Fetal thermal effects of 2008:541–559.

  32. Gatto M, Memoli G, Shaw A, Sadhoo N, Gelat P, Harris RA (2012) Three-dimensional printing (3DP) of neonatal head phantom for ultrasound: thermocouple embedding and simulation of bone. Med Eng Phys 34:929–937. https://doi.org/10.1016/j.medengphy.2011.10.012

    Article  PubMed  Google Scholar 

  33. Irnstorfer N, Unger E, Hojreh A, Homolka P (2019) An anthropomorphic phantom representing a prematurely born neonate for digital x-ray imaging using 3D printing: proof of concept and comparison of image quality from different systems. Sci Rep 9:14357. https://doi.org/10.1038/s41598-019-50925-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fessenden M (2013) 3-D printed windpipe gives infant breath of life. Nature. https://doi.org/10.1038/nature.2013.13085

  35. Les AS, Ohye RG, Filbrun AG, Ghadimi Mahani M, Flanagan CL, Daniels RC, Kidwell KM, Zopf DA, Hollister SJ, Green GE (2019) 3D-printed, externally-implanted, bioresorbable airway splints for severe tracheobronchomalacia. Laryngoscope 129:1763–1771. https://doi.org/10.1002/lary.27863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. SputnikNews. Doctors reconstruct breast bone of 9-month-old, using 3D printing of rib cage, first in India - Sputnik International. Sputnik 2019. https://sputniknews.com/asia/201908121076531125-in-a-first-for-india-doctors-reconstruct-9-month-olds-breast-bone-using-3d-printing-technology/ (accessed July 12, 2020).

  37. Chawanpaiboon S, Vogel JP, Moller AB, Lumbiganon P, Petzold M, Hogan D, Landoulsi S, Jampathong N, Kongwattanakul K, Laopaiboon M, Lewis C, Rattanakanokchai S, Teng DN, Thinkhamrop J, Watananirun K, Zhang J, Zhou W, Gülmezoglu AM (2019) Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health 7:e37–e46. https://doi.org/10.1016/S2214-109X(18)30451-0

    Article  PubMed  Google Scholar 

  38. Zaylaa AJ, Rashid M, Shaib M, El Majzoub I (2018) A Handy preterm infant incubator for providing intensive care: simulation, 3D printed prototype, and evaluation. J Healthc Eng 2018:1–14. https://doi.org/10.1155/2018/8937985

    Article  Google Scholar 

  39. Zuniga J, Katsavelis D, Peck J, Stollberg J, Petrykowski M, Carson A, Fernandez C (2015) Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences. BMC Res Notes 8:10. https://doi.org/10.1186/s13104-015-0971-9

    Article  PubMed  PubMed Central  Google Scholar 

  40. Javaheri S, Gottlieb DJ, Quan SF (2020) Effects of continuous positive airway pressure on blood pressure in obstructive sleep apnea patients: The Apnea Positive Pressure Long-term Efficacy Study (APPLES). J Sleep Res 29:e12943. https://doi.org/10.1111/jsr.12943

    Article  PubMed  Google Scholar 

  41. Marcus CL, Brooks LJ, Ward SD, Draper KA, Gozal D, Halbower AC et al (2012) Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 130:e714–e755. https://doi.org/10.1542/peds.2012-1672

    Article  PubMed  Google Scholar 

  42. Basner RC (2007) Continuous positive airway pressure for obstructive sleep apnea. N Engl J Med 356:1751–1758. https://doi.org/10.1056/NEJMct066953

    Article  CAS  PubMed  Google Scholar 

  43. Morrison RJ, VanKoevering KK, Nasser HB, Kashlan KN (2015) Personalized 3D-printed CPAP masks improve CPAP effectiveness in children with OSA and craniofacial anomalies. Pediatrics 126:e1056–e1063. https://doi.org/10.1542/peds.2010-0856

    Article  Google Scholar 

  44. Kung TA, Gosain AK (2008) Pediatric facial burns. J Craniofac Surg 19:951–959. https://doi.org/10.1097/SCS.0b013e318175f42f

    Article  PubMed  Google Scholar 

  45. Wei Y, Li-Tsang CWP, Liu J, Xie L, Yue S (2017) 3D-printed transparent facemasks in the treatment of facial hypertrophic scars of young children with burns. Burns 43:e19–e26. https://doi.org/10.1016/j.burns.2016.08.034

    Article  PubMed  Google Scholar 

  46. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A (2017) A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev 108:39–50. https://doi.org/10.1016/j.addr.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  47. Öblom H, Zhang J, Pimparade M, Speer I, Preis M, Repka M, Sandler N (2019) 3D-printed isoniazid tablets for the treatment and prevention of tuberculosis—personalized dosing and drug release. AAPS PharmSciTech 20:52. https://doi.org/10.1208/s12249-018-1233-7

    Article  CAS  PubMed  Google Scholar 

  48. Okwuosa TC, Soares C, Gollwitzer V, Habashy R, Timmins P, Alhnan MA (2018) On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. Eur J Pharm Sci 118:134–143. https://doi.org/10.1016/j.ejps.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  49. Preis M, Öblom H (2017) 3D-Printed Drugs for Children—Are we ready yet? AAPS PharmSciTech 18:303–308. https://doi.org/10.1208/s12249-016-0704-y

    Article  PubMed  Google Scholar 

  50. Scoutaris N, Ross SA, Douroumis D (2018) 3D printed “Starmix” drug loaded dosage forms for paediatric applications. Pharm Res 35:34. https://doi.org/10.1007/s11095-017-2284-2

    Article  CAS  PubMed  Google Scholar 

  51. Rycerz K, Stepien KA, Czapiewska M, Arafat BT, Habashy R, Isreb A, Peak M, Alhnan MA (2019) Embedded 3D printing of novel bespoke soft dosage form concept for pediatrics. Pharmaceutics 11. https://doi.org/10.3390/pharmaceutics11120630

  52. DiBlasi RM (2015) Clinical controversies in aerosol therapy for infants and children. Respir Care 60:894–916. https://doi.org/10.4187/respcare.04137

    Article  PubMed  Google Scholar 

  53. Minocchieri S, Burren JM, Bachmann MA, Stern G, Wildhaber J, Buob S, Schindel R, Kraemer R, Frey UP, Nelle M (2008) Development of the premature infant nose throat-model (PrINT-Model)-an upper airway replica of a premature neonate for the study of aerosol delivery. Pediatr Res 64:141–146. https://doi.org/10.1203/PDR.0b013e318175dcfa

    Article  CAS  PubMed  Google Scholar 

  54. Geoffroy M, Gardan J, Asadollahiyazdi E, Laurent S, Lapotre J, Goodnough J et al (2018) Cranial remodeling orthosis for infantile plagiocephaly created through a 3D scan, topological optimization, and 3D printing process. J Prosthetics Orthot 30:247–258. https://doi.org/10.1097/JPO.0000000000000190

    Article  Google Scholar 

  55. Leszczynski J (2017) 3D-printed baby helmets changing lives - BCIT News. Br Columbia Inst Technol BCIT News https://commons.bcit.ca/news/2017/09/3d-printed-baby-helmets-changing-lives/

  56. Chanu AR, Bimol N, Rai B, Wangjam K, Singh NR (2016) Manipulation and orthosis in the management of congenital talipes equinovarus. JMS - J Med Soc 30:27. https://doi.org/10.4103/0972-4958.175800

    Article  Google Scholar 

  57. Wu YY, Rajaraman M, Lee B, Plakseychuk A, Shimada K (2016) A patient-specific flexible 3D printed orthopedic model for training and teaching of clubfoot correction surgery. 3D Print Addit Manuf. https://doi.org/10.1089/3dp.2016.0005

  58. Ganesan B, Luximon A, Al-Jumaily AA, Yip J, Gibbons PJ, Chivers A (2018) Developing a three-dimensional (3D) assessment method for clubfoot-a study protocol. Front Physiol 8. https://doi.org/10.3389/fphys.2017.01098

  59. An J, Chua CK, Mironov V (2016) A perspective on 4D bioprinting. Int J Bioprinting 2:3–5. https://doi.org/10.18063/ijb.2016.01.003

    Article  Google Scholar 

  60. McCabe JF, Yan Z, Al Naimi OT, Mahmoud G, Rolland SL (2009) Smart materials in dentistry-future prospects. Dent Mater J. https://doi.org/10.4012/dmj.28.37

  61. De Lorenzo-Pinto A, Sánchez-Galindo AC, Manrique-Rodríguez S, Fernández-Llamazares CM, Fernández-Lafever SN, San-Prudencio MG et al (2014) Prevention and treatment of intraluminal catheter thrombosis in children hospitalised in a paediatric intensive care unit. J Paediatr Child Health 50:40–46. https://doi.org/10.1111/jpc.12404

    Article  PubMed  Google Scholar 

  62. Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, Ohye RG, Green GE (2015) Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med 7:285ra64. https://doi.org/10.1126/scitranslmed.3010825

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jain P, Kaul R, Saha S, Sarkar S (2017) Smart materials-making pediatric dentistry bio-smart. Int J Pedod Rehabil 2:55. https://doi.org/10.4103/ijpr.ijpr_8_17

    Article  Google Scholar 

  64. Roopavath UK, Malferrari S, Van Haver A, Verstreken F, Rath SN, Kalaskar DM (2019) Optimization of extrusion based ceramic 3D printing process for complex bony designs. Mater Des 162:263–270. https://doi.org/10.1016/j.matdes.2018.11.054

    Article  CAS  Google Scholar 

  65. Gilbert F, O’Connell CD, Mladenovska T, Dodds S (2018) Print me an organ? Ethical and regulatory issues emerging from 3D bioprinting in medicine. Sci Eng Ethics 24:73–91. https://doi.org/10.1007/s11948-017-9874-6

    Article  PubMed  Google Scholar 

  66. Murphy SV, De Coppi P, Atala A (2020) Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng 4:370–380. https://doi.org/10.1038/s41551-019-0471-7

    Article  PubMed  Google Scholar 

  67. Neely EL (2016) The Risks of Revolution: Ethical dilemmas in 3D printing from a US perspective. Sci Eng Ethics 22:1285–1297. https://doi.org/10.1007/s11948-015-9707-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Indian Council of Medical Research (ICMR), India, and Department of Biotechnology (Govt. of India) for 3D printing related project to gain knowledge. Sukanya V S, thanks Council of Scientific & Industrial Research (CSIR), India, for the Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Sukanya V S performed literature search, drafted original manuscript, reviewed, and revised the manuscript. Nalinikanta Panigrahy conducted information analysis, reviewed, revised, and validated the manuscript. The corresponding author (Subha Narayan Rath) conceptualized the work, coordinated, and supervised the revision with critical analysis. All authors have read and agreed to the content of the manuscript.

Corresponding author

Correspondence to Subha Narayan Rath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Daniele De Luca

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

V S, S., Panigrahy, N. & Rath, S.N. Recent approaches in clinical applications of 3D printing in neonates and pediatrics. Eur J Pediatr 180, 323–332 (2021). https://doi.org/10.1007/s00431-020-03819-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-020-03819-w

Keywords

Navigation