Skip to main content
Log in

Macrolides for the prevention and treatment of feeding intolerance in preterm low birth weight infants: a systematic review and meta-analysis

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The role of macrolides for the prevention and treatment of feeding intolerance (FI) in preterm low birth weight (LBW) infants has not been well established. To assess the efficacy and safety of macrolides to prevent or treat FI in preterm LBW infants. A systematic review and meta-analysis (PROSPERO ID: CRD42020170519) was conducted for English articles published since inception to March 2020, using MEDLINE, EMBASE, and the Cochrane Controlled Trials Register. Search terms included preterm low birth weight infants, macrolides, erythromycin, azithromycin, clarithromycin, and feeding intolerance. Randomized controlled trials (RCTs) assessing the effects of macrolide therapy on the time to achieve full enteral feeding (FEF;150 mL/kg/day), duration of parenteral nutrition (PN), hospitalization, and adverse events in preterm LBW infants were included. Independent extraction of data was done by both authors using predefined data-sheet. Very-low to low-quality evidence from 21 RCTs, 19 for erythromycin (prophylaxis-6, rescue-13) and 2 for clarithromycin (prophylaxis-1, rescue-1) demonstrated a significantly beneficial role of erythromycin for an earlier FEF, both as a prophylaxis (SMD-0.53, 95% CI − 0.74,− 0.33; 6 studies, n = 368) as well as rescue (SMD-1.16, 95% CI − 1.88, − 0.44; 11 studies, n = 664). Rescue therapy was also beneficial for a significant reduction in the duration of PN, hospitalization, incidences of sepsis, necrotizing enterocolitis, and cholestasis. No arrhythmia or infantile hypertrophic pyloric stenosis was reported.

Conclusions: Erythromycin therapy, both as prophylaxis and rescue, is beneficial to reduce the time to achieve FEF in preterm LBW infants, at no higher risk of adverse events.

Trial registration: PROSPERO ID: CRD42020170519

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brune KD, Donn SM (2018) Enteral Feeding of the Preterm Infant. NeoReviews 19:e645–e653

    Article  Google Scholar 

  2. Ong KK, Kennedy K, Castaneda-Gutierrez E, Forsyth S, Godfrey KM, Koletzko B et al (2015) Postnatal growth in preterm infants and later health outcomes: a systematic review. Acta Paediatr 104:974–986

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chan SH, Johnson MJ, Leaf AA, Vollmer B (2016) Nutrition and neurodevelopmental outcomes in preterm infants: a systematic review. Acta Paediatrica 105:587–599

    Article  PubMed  Google Scholar 

  4. Kaufman SS, Gondolesi GE, Fishbein TM (2003) Parenteral nutrition associated liver disease. Semin Neonatol 8:375–381

    Article  PubMed  Google Scholar 

  5. Fanaro S (2013) Feeding intolerance in the preterm infant. Early Hum Dev 89:13–20

    Article  Google Scholar 

  6. Jadcherla SR, Klee G, Berseth CL (1997) Regulation of migrating motor complexes by motilin and pancreatic polypeptide in human infants. Pediatr Res 42:365–369

    Article  CAS  PubMed  Google Scholar 

  7. Jadcherla SR, Kliegman RM (2002) Studies of feeding intolerance in very low birth weight infants: definition and significance. Pediatrics 109:516–517

    Article  PubMed  Google Scholar 

  8. Oddie SJ, Young L, McGuire W (2017) Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev 8:CD001241

    PubMed  Google Scholar 

  9. Dorling J, Abbott J, Berrington J, Bosiak B, Bowler U, Boyle E, SIFT Investigators Group et al (2019) Controlled Trial of Two Incremental Milk-Feeding Rates in Preterm Infants. N Engl J Med 381:1434–1443

    Article  PubMed  Google Scholar 

  10. Karagol BS, Zenciroglu A, Okumus N, Polin RA (2013) Randomized controlled trial of slow vs rapid enteral feeding advancements on the clinical outcomes of preterm infants with birth weight 750-1250 g. J Parenter Enteral Nutr 37:223–228

    Article  CAS  Google Scholar 

  11. Nangia S, Bishnoi A, Goel A, Mandal P, Tiwari S, Saili A (2018) Early Total Enteral Feeding in Stable Very Low Birth Weight Infants: A Before and After Study. J Trop Pediatr 64:24–30

    Article  PubMed  Google Scholar 

  12. Nangia S, Vadivel V, Thukral A, Saili A (2019) Early Total Enteral Feeding versus Conventional Enteral Feeding in Stable Very-Low-Birth-Weight Infants: A Randomised Controlled Trial. Neonatology 115:256–262

    Article  PubMed  Google Scholar 

  13. Peeters T, Matthijs G, Depoortere I, Cachet T, Hoogmartens J, Vantrappen G (1989) Erythromycin is a motilin receptor agonist. Am J Physiol 257:G470–G474

    Article  CAS  PubMed  Google Scholar 

  14. Costalos C, Gounaris A, Varhalama E, Kokori F, Alexiou N, Kolovou E (2002) Erythromycin as a prokinetic agent in preterm infants. J Pediatr Gastroenterol Nutr 34:23–25

    Article  CAS  PubMed  Google Scholar 

  15. Ng E, Shah VS (2008) Erythromycin for the prevention and treatment of feeding intolerance in preterm infants. Cochrane Database Syst Rev 3:CD001815

    Google Scholar 

  16. Anderson G, Esmonde TS, Coles S, Macklin J, Carnegie C (1991) A comparative safety and efficacy safety of clarithromycin and erythromycin stearate in community acquired pneumonia. J Antimicrob Chemoter 27:117–124

    Article  Google Scholar 

  17. Gokmen T, Ozdemir R, Bozdag S, Oguz SS, Erdeve O, Uras N, Dilmen U (2013) Clarithromycin treatment in preterm infants: a pilot study for prevention of feeding intolerance. J Matern Fetal Neonatal Med 26:1528–1531

    Article  CAS  PubMed  Google Scholar 

  18. Moshiree B, McDonald R, Hou W, Toskes PP (2010) Comparison of the effect of azithromycin versus erythromycin on antroduodenal pressure profiles of patients with chronic functional gastrointestinal pain and gastroparesis. Dig Dis Sci 55:675–683

    Article  CAS  PubMed  Google Scholar 

  19. Cooper WO, Griffin MR, Arbogast P, Hickson GB, Gautam S, Ray WA (2002) Very early exposure to erythromycin and infantile hypertrophic pyloric stenosis. Arch Pediatr Adolesc Med 156:647–650

    Article  PubMed  Google Scholar 

  20. Maheshwai N (2007) Are young infants treated with erythromycin at risk for developing hypertrophic pyloric stenosis? Arch Dis Child 92:271–273

    Article  PubMed  Google Scholar 

  21. Ludvigsson JF, Lundholm C, Örtqvist AK, Almqvist C (2016) No association between macrolide treatment in infancy and later pyloric stenosis in Sweden. Eur J Epidemiol 31:331–332

    Article  PubMed  Google Scholar 

  22. Murchison L, De Coppi P, Eaton S (2016) Post-natal erythromycin exposure and risk of infantile hypertrophic pyloric stenosis: a systematic review and meta-analysis. Pediatr Surg Int 32:1147–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benoit A, Bodiou C, Villain E, Bavoux F, Checoury A, Badoual J (1991) QT prolongation and circulatory arrest after an injection of erythromycin in a newborn infant. Arch Fr Pediatr 48:39–41

    CAS  PubMed  Google Scholar 

  24. Katapadi K, Kostandy G, Katapadi M, Hussain KM, Schifter D (1997) A review of erythromycin-induced malignant tachyarrhythmia—torsade de pointes. A case report. Angiology 48:821–826

    Article  CAS  PubMed  Google Scholar 

  25. Lakritz J, Wilson DW (1997) Erythromycin: pharmacokinetics, bioavailability, antimicrobial activity, and possible mechanisms associated with adverse reactions. Proceedings of the Annual Convention of the AAEP 43:83–86

    Google Scholar 

  26. Buck ML (2010) Erythromycin as a gastrointestinal prokinetic agent in infants. Pediatr Pharmacother 16:1–4

    Google Scholar 

  27. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 339:b2535

    Article  PubMed  PubMed Central  Google Scholar 

  28. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al (2019) editors. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.0. Chichester (UK): John Wiley & Sons

  29. Borenstein M, Hedges L, Higgins J, Rothstein H (2013) Comprehensive Meta-Analysis Version 3. Biostat, Englewood

    Google Scholar 

  30. Review Manager (RevMan) [Computer program] (2020) Version 5.4, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration

  31. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schünemann H, Brożek J, Guyatt G, Oxman A (2013) editors. GRADE handbook for grading quality of evidence and strength of recommendations. The GRADE Working Group. Available from: guidelinedevelopment.org/handbook

  33. GRADEpro GDT: GRADEpro Guideline Development Tool [Software] (2020) McMaster University (developed by Evidence Prime, Inc.). Available from: gradepro.org

  34. Oei J, Lui K (2001) A placebo-controlled trial of low-dose erythromycin to promote feed tolerance in preterm infants. Acta Paediatr 90:904–908

    Article  CAS  PubMed  Google Scholar 

  35. Mohammadizadeh M, Ghazinour M, Iranpour R (2010) Efficacy of prophylactic oral erythromycin to improve enteral feeding tolerance in preterm infants: a randomised controlled study. Singapore Med J 51:952–956

    CAS  PubMed  Google Scholar 

  36. Stenson BJ, Middlemist L, Lyon AJ (1998) Influence of erythromycin on establishment of feeding in preterm infants: observations from a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 79:F212–F214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patole SK, Almonte R, Kadalraja R, Tuladhar R, Muller R, Whitehall JS (2000) Can prophylactic oral erythromycin reduce time to full enteral feeds in preterm neonates? Int J Clin Pract 54:504–508

    CAS  PubMed  Google Scholar 

  38. Gokmen T, Oguz S, Bozdag S, Erdeve O, Uras N, Dilmen U (2012) A controlled trial of erythromycin and UDCA in premature infants during parenteral nutrition in minimizing feeding intolerance and liver function abnormalities. J Perinatol 32:123–128

    Article  CAS  PubMed  Google Scholar 

  39. Sukmawati M, Rohsiswatmo R, Suradi R, Gayatri P (2017) Efficacy of oral erythromycin to enhance feeding tolerance in preterm infants. Paediatr Indones 57:154–159

    Article  Google Scholar 

  40. Cairns PA, Craig S, Tubman R, Roberts RS, Wilson J, Schmidt B (2002) Randomised controlled trial of low-dose erythromycin in preterm infants with feed intolerance. Pediatr Res 51:379A

    Google Scholar 

  41. ElHennawy AA, Sparks JW, Armentrout D, Huseby V, Berseth CL (2003) Erythromycin fails to improve feeding outcome in feeding-intolerant preterm infants. J Pediatr Gastroenterol Nutr 37:281–286

    Article  CAS  PubMed  Google Scholar 

  42. Aly H, Abdel-Hady H, Khashaba M, El-Badry N (2007) Erythromycin and feeding intolerance in premature infants: a randomized trial. J Perinatol 27:39–43

    Article  CAS  PubMed  Google Scholar 

  43. Ng PC, So KW, Fung KSC, Lee CH, Fok TF, Wong E, Wong W, Cheung KL, Cheng AF (2001) Randomised controlled study of oral erythromycin for treatment of gastrointestinal dysmotility in preterm infants. Arch Dis Child Fetal Neonatal Ed 84:F177–F182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ng SC, Gomez JM, Rajadurai VS, Saw S, Quak S (2003) Establishing enteral feeding in preterm infants with feeding intolerance; A randomized controlled study of low-dose erythromycin. J Pediatr Gastroenterol Nutr 37:554–548

    Article  CAS  PubMed  Google Scholar 

  45. Madani A, Pishva N, Pourarian SH, Zarkesh M (2004) The efficacy of oral erythromycin in enhancement of milk tolerance in premature infants: A randomized controlled trial. Iran J Med Sci 29:1–4

    Google Scholar 

  46. Nuntnarumit P, Kiatchoosakun P, Tantiprapa W, Boonkasidecha S (2006) Efficacy of oral erythromycin for treatment of feeding intolerance in preterm infants. J Pediatr 148:600–605

    Article  CAS  PubMed  Google Scholar 

  47. Ng PC, Lee CH, Wong SP, Lam HS, Liu FY, So KW et al (2007) High-dose oral erythromycin decreased the incidence of parenteral nutrition-associated cholestasis in preterm infants. Gastroenterology 132:1726–1739

    Article  CAS  PubMed  Google Scholar 

  48. Zarkesh M, Haryalch K, Madani A, Pishva N, Poorarian S (2010) Efficacy of high-dose oral erythromycin on enhancement of feeding tolerance in premature neonates. Iran J Neonatol 1:15–19

    Google Scholar 

  49. Mansi Y, Abdelaziz N, Ezzeldin Z, Ibrahim R (2011) Randomized Controlled Trial of a High Dose of Oral Erythromycin for the Treatment of Feeding Intolerance in Preterm Infants. Neonatology 100:290–294

    Article  PubMed  Google Scholar 

  50. Ng YY, Su PH, Chen JY, Quek YW, Hu JM, Lee IC, Lee HS, Chang HP (2012) Efficacy of intermediate-dose oral erythromycin on very low birth weight infants with feeding intolerance. Pediatr Neonatol 53:34–40

    Article  PubMed  Google Scholar 

  51. Saboute M, Mazouri A, NaimiDehnavi F, Khalesi N, Farahani Z (2018) Influence of high-dose oral erythromycin on feeding intolerance in preterm neonates: A randomized controlled trial. Med J Islam Repub Iran 32:9

    Article  PubMed  PubMed Central  Google Scholar 

  52. Armanian A, Mousavi A, Mohammadizadeh M, Salehimehr N, Hassanzade A (2019) Evaluating the Effect of the Intermediate-Dose Oral Erythromycin on the Treatment of Feeding Intolerance in Premature Neonates: A Randomized Clinical Trial. Iran Red Crescent Med J 21:e92790

    Article  Google Scholar 

  53. Berseth CL (1996) Gastrointestinal motility in the neonate. Clin Perinatol 23:179–190

    Article  CAS  PubMed  Google Scholar 

  54. Takanashi H, Cynshi O (2009) Motilides: a long and winding road: lessons from mitemcinal (GM-611) on diabetic gastroparesis. Regul Pept 155:18–23

    Article  CAS  PubMed  Google Scholar 

  55. Jadcherla SR, Berseth CL (2002) Effect of erythromycin on gastroduodenal contractile activity in developing neonates. J Pediatr Gastroenterol Nutr 34:16–22

    Article  CAS  PubMed  Google Scholar 

  56. Bruley des Varannes S, Parys V, Ropert A, Chayvialle JA, Rozé C, Galmiche JP (1995) Erythromycin enhances fasting and postprandial proximal gastric tone in humans. Gastroenterology 109:32–39

    Article  CAS  PubMed  Google Scholar 

  57. Janssens J, Peeters TL, Vantrappen G, Tack J, Urbain JL, De Roo M et al (1990) Improvement of gastric emptying in diabetic gastroparesis by erythromycin. Preliminary studies. N Engl J Med 322:1028–1031

    Article  CAS  PubMed  Google Scholar 

  58. Mathis C, Malbert CH (1998) Changes in pyloric resistance induced by erythromycin. Neurogastroenterol Motil 10:131–138

    Article  CAS  PubMed  Google Scholar 

  59. Banerjee A, Chitnis UB, Jadhav SL, Bhawalkar JS, Chaudhury S (2009) Hypothesis testing, type I and type II errors. Ind Psychiatry J 18:127–131

    Article  PubMed  PubMed Central  Google Scholar 

  60. Boyd CA, Quigley MA, Brocklehurst P (2007) Donor breast milk versus infant formula for preterm infants: systematic review and metaanalysis. Arch Dis Child Fetal Neonatal Ed 92:F169–F175

    Article  PubMed  Google Scholar 

  61. Quigley M, McGuire W (2014) Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev 22:CD002971

    Google Scholar 

  62. Sisk PM, Lambeth TM, Rojas MA, Lightbourne T, Barahona M, Anthony E, Auringer ST (2017) Necrotizing Enterocolitis and growth in preterm infants fed predominantly maternal milk, pasteurized donor milk, or preterm formula: a retrospective study. Am J Perinatol 34:676–683

    PubMed  Google Scholar 

  63. Corpeleijn WE, de Waard M, Christmann V, van Goudoever JB, Jansen-van der Weide MC, Kooi EM et al (2016) Effect of Donor Milk on Severe Infections and Mortality in Very Low-Birth-Weight Infants: The Early Nutrition Study Randomized Clinical Trial. JAMA Pediatr 170:654–661

    Article  PubMed  Google Scholar 

  64. Costa S, Maggio L, Alighieri G, Barone G, Cota F, Vento G (2018) Tolerance of preterm formula versus pasteurized donor human milk in very preterm infants: a randomized non-inferiority trial. Ital J Pediatr 44:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Gouyon JB, Benoit A, Bétremieux P, Sandre D, Sgro C, Bavoux F, Beneton C, Badoual J (1994) Cardiac toxicity of intravenous erythromycin lactobionate in preterm infants. Pediatr Infect Dis J 13:840–841

    Article  CAS  PubMed  Google Scholar 

  66. Sims PJ, Waites KB, Crouse DT (1994) Erythromycin lactobionate toxicity in preterm neonates. Pediatr Infect Dis J 13:164–167

    CAS  PubMed  Google Scholar 

  67. Otterson MF, Sarna SK (1990) Gastrointestinal motor effects of erythromycin. Am J Physiol 259:G355–G363

    CAS  PubMed  Google Scholar 

  68. Coulie B, Tack J, Peeters T, Janssens J (1998) Involvement of two different pathways in the motor effects of erythromycin on the gastric antrum in humans. Gut 43:395–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Berseth CL (1990) Neonatal small intestinal motility: motor responses to feeding in term and preterm infants. J Pediatr 117:777–782

    Article  CAS  PubMed  Google Scholar 

  70. Bisset WM, Watt JB, Rivers RP, Milla PJ (1988) Ontogeny of fasting small intestinal motor activity in the human infant. Gut 29:483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Curry JI, Lander TD, Stringer MD (2001) Erythromycin as a prokinetic agent in infants and children. Aliment Pharmacol Ther 15:595–603

    Article  CAS  PubMed  Google Scholar 

  72. Westphal JF, Vetter D, Brogard JM (1994) Hepatic side effects of antibiotics. J Antimicrob Chemother 33:387–401

    Article  CAS  PubMed  Google Scholar 

  73. Chi C, Buys N, Li C, Sun J, Yin C (2019) Effects of Prebiotics on Sepsis, Necrotizing Enterocolitis, Mortality, Feeding Intolerance, Time to Full Enteral Feeding, Length of Hospital Stay, and Stool Frequency in Preterm Infants: A Meta-Analysis. Eur J Clin Nutr 73:657–670

    Article  CAS  PubMed  Google Scholar 

  74. Indrio F, Riezzo G, Tafuri S, Ficarella M, Carlucci B, Bisceglia M, Polimeno L, Francavilla R (2017) Probiotic Supplementation in Preterm: Feeding Intolerance and Hospital Cost. Nutrients 9:965

    Article  PubMed Central  CAS  Google Scholar 

  75. Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol Motil 23:187–192

    Article  CAS  PubMed  Google Scholar 

  76. Athalye-Jape G, Patole S (2019) Probiotics for preterm infants - time to end all controversies. Microb Biotechnol 12:249–253

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sriparna Basu (SB) and Susan Smith (SS) conceptualized and planned this systematic review. SB searched the literature, collected the study details and outcome data using a predetermined form designed for this purpose in consultation with SS. The disagreement was resolved by discussion. The risk of bias for each study was assessed by SB. Both the authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Sriparna Basu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Daniele De Luca

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Web Figure 1

Forest plots for the days to achieve full enteral feeding (150 mL/kg/day): A Low-dose erythromycin prophylaxis, B High-dose erythromycin prophylaxis (PNG 54 kb)

High resolution image (TIF 141 kb)

Web Figure 2

Forest plots for the days to achieve full enteral feeding (150 mL/kg/day): A Low-dose erythromycin rescue, B High-dose erythromycin rescue (PNG 378 kb)

High resolution image (TIF 507 kb)

Web Figure 3

Forest plots for the days to achieve full enteral feeding (150 mL/kg/day) after erythromycin rescue therapy: A Infants of gestational age ≥ 32 weeks B Infants of gestational age < 32 weeks (PNG 342 kb)

High resolution image (TIF 483 kb)

Web Figure 4

Forest plots for the duration of hospitalization after erythromycin rescue therapy: A Infants of gestational age ≥ 32 weeks B Infants of gestational age < 32 weeks (PNG 292 kb)

High resolution image (TIF 396 kb)

Web Table 1

Details of database search (DOCX 13 kb)

Web Table 2

Details of excluded articles (DOCX 21 kb)

Web Table 3

Meta-regression of individual outcome on mean gestation for studies using erythromycin as prophylaxis (DOCX 13 kb)

Web Table 4

Meta-regression of individual outcome on mean gestation for studies using erythromycin as treatment (DOCX 14 kb)

Web Table 5

Publication bias for individual outcome (Egger’s regression) for studies using erythromycin as prophylaxis (DOCX 13 kb)

Web Table 6

Publication bias for individual outcome (Egger’s regression) for studies using erythromycin as treatment (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, S., Smith, S. Macrolides for the prevention and treatment of feeding intolerance in preterm low birth weight infants: a systematic review and meta-analysis. Eur J Pediatr 180, 353–378 (2021). https://doi.org/10.1007/s00431-020-03814-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-020-03814-1

Keywords

Navigation