Skip to main content
Log in

Cerebral blood flow velocity and oxygenation correlate predominantly with right ventricular function in cooled neonates with moderate-severe hypoxic-ischemic encephalopathy

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The relationship between right ventricular (RV) function and cerebral blood flow (CBF) velocity and cerebral oxygenation was assessed in neonates with hypoxic-ischemic encephalopathy (HIE) treated with therapeutic hypothermia (TH). Echocardiographic, transcranial Doppler, and hemodynamic data from 37 neonates with moderate-severe HIE + TH were reviewed. Twenty healthy newborns served as controls. Cardiac dysfunction in HIE + TH was characterized by a predominant RV dysfunction, with concomitantly reduced CBF velocity. A significant correlation was found between CBF velocity and tricuspid annular plane systolic excursion (TAPSE), RV output (RVO), and stroke volume (SVRV), as well as with left ventricular output and stroke volume. Brain oxygenation (rSO2) correlated significantly with RVO, SVRV, TAPSE, ejection fraction, and fractional shortening, whereas cerebral fractional tissue oxygen extraction (FTOEc) correlated with RVO, SVRV, RV myocardial performance index, and superior vena cava flow. CBF velocity and cerebral NIRS correlations were stronger with parameters of right ventricular performance.

Conclusion: CBF velocity and brain oxygenation correlate predominantly with RV function in HIE + TH. This suggests a preferential contribution of RV performance to cerebral hemodynamics in this context.

What is Known:

• Neonates with hypoxic ischemic encephalopathy frequently exhibit alterations of cardiac function and cerebral blood flow.

• These are considered organ-specific consequences of perinatal asphyxia.

What is New:

• We show that cerebral blood flow velocity and brain oxygenation are correlated predominantly with right ventricular function during therapeutic hypothermia.

• This suggests a potential direct contribution of right ventricular performance to cerebral hemodynamics in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BP:

Blood pressure

CBF:

Cerebral blood flow

cFTOE:

Cerebral fractional tissue oxygen extraction

CO:

Cardiac output

CrSO2:

Cerebral regional oxygen saturation

CTnI:

Cardiac troponin I

EDV:

End diastolic velocity

EF:

Ejection fraction

FS:

Fractional shortening

FTOE:

Fractional tissue oxygen extraction

HIE:

Hypoxic-ischemic encephalopathy

HR:

Heart rate

IQR:

Inter quartile range

LFESD:

Left ventricular end systolic diameters

LV:

Left ventricle

LVEDD:

Left ventricular end diastolic diameter

LVET:

Left ventricular ejection time

LVO:

Left ventricular output

MCA:

Mean cerebral artery

MPI:

Myocardial performance index or Tei index

MPILV :

Left ventricular myocardial performance index or Tei index

MPIRV :

Right ventricular myocardial performance index or Tei index

NICU:

Neonatal intensive care unit

NIRS:

Near-infrared spectroscopy

NPE:

Neonatologist-performed echocardiography

PAAT:

Pulmonary artery accelerating time

PDA:

Patent ductus arteriosus

PFO:

Patent foramen ovale

PH:

Pulmonary hypertension

PSV:

Peak systolic velocity

PVR:

Pulmonary vascular resistance

RI:

Resistive index

rSO2:

Regional oxygen saturation

RV:

Right ventricle

RVET:

Right ventricular ejection time

RVO:

Right ventricular output

SrSO2:

Somatic regional oxygen saturation

SV:

Stroke volume

SVCF:

Superior vena cava flow

SVLV :

Left ventricular stroke volume

SVRV :

Right ventricular stroke volume

TAPSE:

Tricuspid annular plane systolic excursion

TH:

Therapeutic hypothermia

TPV:

Time to peak velocity

VTI:

Velocity time integral

D:

Diameter

References

  1. Giesinger RE, Bailey LJ, Deshpande P, McNamara PJ (2017) Hypoxic-ischemic encephalopathy and therapeutic hypothermia: the hemodynamic perspective. J Pediatr 180:22–30.e2

    Article  Google Scholar 

  2. Tagin MA, Woolcott CG, Vincer MJ, Whyte RK, Stinson DA (2012) Hypothermia for neonatal hypoxic ischemic encephalopathy. An updated systematic review and meta-analysis. Arch Pediatr Adolesc Med 166:558–566

    Article  Google Scholar 

  3. Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, Kapellou O, Levene M, Marlow N, Porter E, Thoresen M, Whitelaw A, Brocklehurst P, TOBY Study Group (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 361:1349–1358

    Article  CAS  Google Scholar 

  4. Shah P, Riphagen S, Beyene J, Perlman M (2004) Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 89:F152–F155

    Article  CAS  Google Scholar 

  5. Kluckow M (2011) Functional echocardiography in assessment of the cardiovascular system in asphyxiated neonates. J Pediatr 158:e13–e18

    Article  Google Scholar 

  6. More KS, Sakhuja P, Giesinger RE, Ting JY, Keyzers M, Sheth JN, Lapointe A, Jain A, Moore AM, Miller SP, McNamara PJ (2018) Cardiovascular associations with abnormal brain magnetic resonance imaging in neonates with hypoxic ischemic encephalopathy undergoing therapeutic hypothermia and rewarming. Am J Perinatol 35:979–989

    Article  Google Scholar 

  7. Van Bel F, Walther FJ (1990) Myocardial dysfunction and cerebral blood flow velocity following birth asphyxia. Acta Paediatr Scand 79:756–762

    Article  Google Scholar 

  8. Aggarwal S, Natarajan G (2017) Biventricular function on early echocardiograms in neonatal hypoxic-ischaemic encephalopathy. Acta Paediatr 106:1085–1090

    Article  Google Scholar 

  9. Hochwald O, Jabr M, Osiovich H, Miller SP, McNamara PJ, Lavoie PM (2014) Preferential cephalic redistribution of left ventricular cardiac output during therapeutic hypothermia for perinatal hypoxic-ischemic encephalopathy. J Pediatr 164:999–1004

    Article  Google Scholar 

  10. Nestaas E, Skranes JH, Støylen A, Brunvand L, Fugelseth D (2014) The myocardial function during and after whole-body therapeutic hypothermia for hypoxic-ischemic encephalopathy, a cohort study. Early Hum Dev 90:247–252

    Article  Google Scholar 

  11. Lakshminrusimha S, Shankaran S, Laptook A, McDonald S, Keszler M, Van Meurs K, Guillet R, Chawla S, Sood BG, Bonifacio S, Das A, Higgins RD (2018) Pulmonary hypertension associated with hypoxic-ischemic encephalopathy-antecedent characteristics and comorbidities. J Pediatr 196:45–51.e3

    Article  Google Scholar 

  12. Wu TW, Tamrazi B, Soleymani S, Seri I, Noori S (2018) Hemodynamic changes during rewarming phase of whole-body hypothermia therapy in neonates with hypoxic-ischemic encephalopathy. J Pediatr 197:68–74.e2

    Article  Google Scholar 

  13. Giesinger RE, El Shahed AI, Castaldo MP, Breatnach CR, Chau V, Whyte HE, El-Khuffash A, Mertens L, McNamara PJ (2019) Impaired right ventricular performance is associated with adverse outcome following hypoxic ischemic encephalopathy. Am J Respir Crit Care Med 200:1294–1305. https://doi.org/10.1164/rccm.201903-0583OC

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Li J, Gu M (2007) The correlation between myocardial function and cerebral hemodynamics in term infants with hypoxic-ischemic encephalopathy. J Trop Pediatr 53:44–48

    Article  Google Scholar 

  15. Greisen G (2014) Cerebral blood flow and oxygenation in infants after birth asphyxia. Clinically useful information? Early Hum Dev 90:703–705

    Article  Google Scholar 

  16. Molicki J, Dekker I, de Groot Y, van Bel F (2000) Cerebral blood flow velocity wave form as an indicator of neonatal left ventricular heart function. Eur J Ultrasound 12:31–41

    Article  CAS  Google Scholar 

  17. Mertens L, Seri I, Marek J, Arlettaz R, Barker P, McNamara P, Moon-Grady AJ, Coon PD, Noori S, Simpson J, Lai WW, Writing Group of the American Society of Echocardiography; European Association of Echocardiography (2011) Association for European Pediatric Cardiologists Targeted Neonatal Echocardiography in the Neonatal Intensive Care Unit: practice guidelines and recommendations for training. J Am Soc Echocardiogr 24:1057–1078

    Article  Google Scholar 

  18. Naulaers G, Meyns B, Miserez M, Leunens V, Van Huffel S, Casaer P, Weindling M, Devlieger H (2007) Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets. Neonatology 92:120–126

    Article  CAS  Google Scholar 

  19. Kumagai T, Higuchi R, Higa A, Tsuno Y, Hiramatsu C, Sugimoto T, Booka M, Okutani T, Yoshikawa N (2013) Correlation between echocardiographic superior vena cava flow and short-term outcome in infants with asphyxia. Early Hum Dev 89:307–310

    Article  Google Scholar 

  20. Tublin ME, Tessler FN, Murphy ME (1999) Correlation between renal vascular resistance, pulse pressure, and the resistive index in isolated perfused rabbit kidneys. Radiology. 213:258–264

    Article  CAS  Google Scholar 

  21. Raju TN (1991) Cerebral Doppler studies in the fetus and newborn infant. J Pediatr 119:165–174

    Article  CAS  Google Scholar 

  22. Guan B, Dai C, Zhang Y, Zhu L, He X, Wang N, Liu H (2017) Early diagnosis and outcome prediction of neonatal hypoxic-ischemic encephalopathy with color Doppler ultrasound. Diagn Interv Imaging 98:469–475

    Article  CAS  Google Scholar 

  23. Wintermark P, Hansen A, Gregas MC, Soul J, Labrecque M, Robertson RL, Warfield SK (2011) Brain perfusion in asphyxiated newborns treated with therapeutic hypothermia. AJNR Am J Neuroradiol 32:2023–2029

    Article  CAS  Google Scholar 

  24. Toet MC, Lemmers PM, van Schelven LJ, van Bel F (2006) Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics. 117(2):333–339

    Article  Google Scholar 

  25. Zhou WJ, Yu F, Shi J, Yang H, Zou SJ, Jiang YM (2016) Serum levels of cardiac troponin I in asphyxiated neonates predict mortality. Clin Lab 62:1427–1434

    CAS  PubMed  Google Scholar 

  26. Karaarslan S, Alp H, Baysal T, Çimen D, Örs R, Oran B (2012) Is myocardial performance index useful in differential diagnosis of moderate and severe hypoxic-ischaemic encephalopathy? A serial Doppler echocardiographic evaluation. Cardiol Young 22:335–340

    Article  Google Scholar 

  27. Jain A, Mohamed A, Kavanagh B, Shah PS, Kuipers BCW, El-Khuffash A, Mertens L, Jankov RP, McNamara PJ (2018) Cardiopulmonary adaptation during first day of life in human neonates. J Pediatr 200:50–7.e2

    Article  Google Scholar 

  28. Levy PT, El Khuffash A, Woo KV, Hauck A, Hamvas A, Singh GK (2019) A novel noninvasive index to characterize right ventricle pulmonary arterial vascular coupling in children. JACC Cardiovasc Imaging 12(4):761–763

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study design: LA and MJR. Acquisition of data: MJR, AC, and LA. Data analysis: JMO. Interpretation of data: MJR, AC, JMO, and LA. Manuscript drafting: LA. All the authors critically reviewed the draft and gave their approval to the final version of the manuscript.

Corresponding author

Correspondence to Luis Arruza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the local Ethics Committee.

Informed consent

An exemption of formal consent was obtained for the inclusion of retrospective data. Parental informed consent was obtained before enrollment of control patients.

Additional information

Communicated by Daniele De Luca,

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, M.J., Corredera, A., Martinez-Orgado, J. et al. Cerebral blood flow velocity and oxygenation correlate predominantly with right ventricular function in cooled neonates with moderate-severe hypoxic-ischemic encephalopathy. Eur J Pediatr 179, 1609–1618 (2020). https://doi.org/10.1007/s00431-020-03657-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-020-03657-w

Keywords

Navigation