Skip to main content

Advertisement

Log in

Exome sequencing of extreme phenotypes in bronchopulmonary dysplasia

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Bronchopulmonary dysplasia is the most common chronic respiratory disease in premature infants with growing evidence that genetic factors contribute largely to moderate and severe cases. We assessed by exome sequencing if rare genetic variants could account for extremely severe phenotypes. We selected 6 infants born very preterm with severe bronchopulmonary dysplasia and 8 very preterm born controls for exome sequencing. We filtered whole exome sequencing results to include only rare variants and selected variants and/or genes with variants that were present in at least 2 cases and absent in controls. We selected variants, all heterozygous, in 9 candidate genes, 7 with a putative role in lung development and 2 that displayed 3 variations in 3 different cases, independently of their potential role in lung development. Sequencing of 5 other severe cases for these variants did not replicate our results.

Conclusion: In selected preterm born infants with severe bronchopulmonary dysplasia and controls, we failed to find any rare variant shared by several infants with an extremely severe phenotype. Our results are not consistent with the role of rare causative variants in bronchopulmonary dysplasia’s development and argue for the highly polygenic nature of susceptibility of this disorder.

What is Known:

Bronchopulmonary dysplasia is a multifactorial disease resulting from complex environmental and genetic interactions occurring in an immature lung.

It is not known whether rare genetic variants in coding regions could account for extreme phenotypes of the disease.

What is New:

In a group of infants with an extreme phenotype of bronchopulmonary dysplasia and in comparison to controls, no common genetic variants were found, nor did variants that were select in other exome studies in this setting.

These results argue for the highly polygenic nature of susceptibility of bronchopulmonary dysplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACTN4:

Actinin alpha 4

ADAMTS17:

ADAM metallopeptidase with thrombospondin type 1 motif 17

BPD:

Bronchopulmonary dysplasia

CNST:

Consortin, connexin sorting protein

DNA:

Deoxyribonucleic acid

GWAS:

Genome-wide association study

HDAC10:

Histone deacetylase 10

KIF16B:

Kinesin family member 16B

NUMA1:

Nuclear mitotic apparatus protein 1

SCUBE3:

Signal peptide, CUB domain and EGF like domain containing 3

SIFT:

Sorting intolerant from tolerant

SNP:

Single nucleotide polymorphism

SPOCK2:

SPARC/osteonectin, CWCV, and Kazal-like domains proteoglycan 2

UV:

Ultra-violet

wPMA:

Weeks of post-menstrual age

References

  1. Lavoie PM, Pham C, Jang KL (2008) Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the national institutes of health. Pediatrics 122:479–485

    Article  Google Scholar 

  2. Bhandari V, Bizzarro MJ, Shetty A, Zhong X, Page GP, Zhang H, Ment LR, Gruen JR, Neonatal Genetics Study Group (2006) Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics 117:1901–1906

    Article  Google Scholar 

  3. Shaw GM, O’Brodovich HM (2013) Progress in understanding the genetics of bronchopulmonary dysplasia. Semin Perinatol 37:85–93. https://doi.org/10.1053/j.semperi.2013.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hadchouel A, Durrmeyer X, Bouzigon E et al (2011) Identification of SPOCK2 as a Susceptibility Gene for Bronchopulmonary Dysplasia. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.201103-0548OC

  5. Wang H, St Julien KR, Stevenson DK, Hoffmann TJ, Witte JS, Lazzeroni LC, Krasnow MA, Quaintance CC, Oehlert JW, Jelliffe-Pawlowski LL, Gould JB, Shaw GM, O'Brodovich HM (2013) A genome-wide association study (GWAS) for bronchopulmonary dysplasia. Pediatrics 132:290–297. https://doi.org/10.1542/peds.2013-0533

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ambalavanan N, Cotten CM, Page GP et al (2015) Integrated genomic analyses in bronchopulmonary dysplasia. J Pediatr 166:531–537.e13. https://doi.org/10.1016/j.jpeds.2014.09.052

    Article  CAS  PubMed  Google Scholar 

  7. Mahlman M, Karjalainen MK, Huusko JM, Andersson S, Kari MA, Tammela OKT, Sankilampi U, Lehtonen L, Marttila RH, Bassler D, Poets CF, Lacaze-Masmonteil T, Danan C, Delacourt C, Palotie A, Muglia LJ, Lavoie PM, Hadchouel A, Rämet M, Hallman M (2017) Genome-wide association study of bronchopulmonary dysplasia: a potential role for variants near the CRP gene. Sci Rep 7:9271. https://doi.org/10.1038/s41598-017-08977-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Emond MJ, Louie T, Emerson J, Zhao W, Mathias RA, Knowles MR, Wright FA, Rieder MJ, Tabor HK, Nickerson DA, Barnes KC, National Heart, Lung, and Blood Institute (NHLBI) GO Exome Sequencing Project, Lung GO, Gibson RL, Bamshad MJ (2012) Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nat Genet 44:886–889. https://doi.org/10.1038/ng.2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Radder JE, Zhang Y, Gregory AD, Yu S, Kelly NJ, Leader JK, Kaminski N, Sciurba FC, Shapiro SD (2017) Extreme Trait Whole-Genome Sequencing Identifies PTPRO as a Novel Candidate Gene in Emphysema with Severe Airflow Obstruction. Am J Respir Crit Care Med 196:159–171. https://doi.org/10.1164/rccm.201606-1147OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Landis BJ, Schubert JA, Lai D, Jegga AG, Shikany AR, Foroud T, Ware SM, Hinton RB (2017) Exome Sequencing Identifies Candidate Genetic Modifiers of Syndromic and Familial Thoracic Aortic Aneurysm Severity. J Cardiovasc Transl Res 10:423–432. https://doi.org/10.1007/s12265-017-9753-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carrera C, Jiménez-Conde J, Derdak S et al (2016) Whole exome sequencing analysis reveals TRPV3 as a risk factor for cardioembolic stroke. Thromb Haemost 116:1165–1171. https://doi.org/10.1160/TH16-02-0113

    Article  PubMed  Google Scholar 

  12. Li J, Yu K-H, Oehlert J, Jeliffe-Pawlowski LL, Gould JB, Stevenson DK, Snyder M, Shaw GM, O'Brodovich HM (2015) Exome Sequencing of Neonatal Blood Spots and the Identification of Genes Implicated in Bronchopulmonary Dysplasia. Am J Respir Crit Care Med 192:589–596. https://doi.org/10.1164/rccm.201501-0168OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carrera P, Di Resta C, Volonteri C et al (2015) Exome sequencing and pathway analysis for identification of genetic variability relevant for bronchopulmonary dysplasia (BPD) in preterm newborns: A pilot study. Clin Chim Acta Int J Clin Chem 451:39–45. https://doi.org/10.1016/j.cca.2015.01.001

    Article  CAS  Google Scholar 

  14. PROP Investigators, Hamvas A, Feng R et al (2018) Exome sequencing identifies gene variants and networks associated with extreme respiratory outcomes following preterm birth. BMC Genet 19. https://doi.org/10.1186/s12863-018-0679-7

  15. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust E, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, Gabriel S, Jaffe DB, Lander ES, Nusbaum C (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189. https://doi.org/10.1038/nbt.1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Piersigilli F, Bhandari V (2015) Biomarkers in neonatology: the new “omics” of bronchopulmonary dysplasia. J Matern Fetal Neonatal Med 29:1–7. https://doi.org/10.3109/14767058.2015.1061495

    Article  CAS  Google Scholar 

  17. Nagata K, Masumoto K, Esumi G, Teshiba R, Yoshizaki K, Fukumoto S, Nonaka K, Taguchi T (2009) Connexin43 plays an important role in lung development. J Pediatr Surg 44:2296–2301. https://doi.org/10.1016/j.jpedsurg.2009.07.070

    Article  PubMed  Google Scholar 

  18. Tsao P-N, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV (2009) Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136:2297–2307. https://doi.org/10.1242/dev.034884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsao P-N, Wei S-C, Wu M-F, Huang MT, Lin HY, Lee MC, Lin KM, Wang IJ, Kaartinen V, Yang LT, Cardoso WV (2011) Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development 138:3533–3543. https://doi.org/10.1242/dev.063727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boulaftali Y, François D, Venisse L et al (2013) Endothelial Protease Nexin-1 Is a Novel Regulator of A Disintegrin and Metalloproteinase 17 Maturation and Endothelial Protein C Receptor Shedding via Furin Inhibition. Arterioscler Thromb Vasc Biol 33:1647–1654. https://doi.org/10.1161/ATVBAHA.113.301494

    Article  CAS  PubMed  Google Scholar 

  21. Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, López-Otín C (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283:49–62. https://doi.org/10.1016/S0378-1119(01)00861-7

    Article  CAS  PubMed  Google Scholar 

  22. Le Goff C, Cormier-Daire V (2011) The ADAMTS(L) family and human genetic disorders. Hum Mol Genet 20:R163–R167. https://doi.org/10.1093/hmg/ddr361

    Article  CAS  PubMed  Google Scholar 

  23. Shao H, Wang JH-C, Pollak MR, Wells A (2010) α-Actinin-4 Is Essential for Maintaining the Spreading, Motility and Contractility of Fibroblasts. PLoS ONE 5:e13921. https://doi.org/10.1371/journal.pone.0013921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Friedmacher F, Doi T, Gosemann J-H, Fujiwara N, Kutasy B, Puri P (2012) Upregulation of fibroblast growth factor receptor 2 and 3 in the late stages of fetal lung development in the nitrofen rat model. Pediatr Surg Int 28:195–199. https://doi.org/10.1007/s00383-011-2985-2

    Article  PubMed  Google Scholar 

  25. Ueno H, Huang X, Tanaka Y, Hirokawa N (2011) KIF16B/Rab14 Molecular Motor Complex Is Critical for Early Embryonic Development by Transporting FGF Receptor. Dev Cell 20:60–71. https://doi.org/10.1016/j.devcel.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  26. Song C, Zhu S, Wu C, Kang J (2013) Histone Deacetylase (HDAC) 10 Suppresses Cervical Cancer Metastasis through Inhibition of Matrix Metalloproteinase (MMP) 2 and 9 Expression. J Biol Chem 288:28021–28033. https://doi.org/10.1074/jbc.M113.498758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu Y-Y, Peck K, Chang Y-L, Pan SH, Cheng YF, Lin JC, Yang RB, Hong TM, Yang PC (2011) SCUBE3 is an endogenous TGF-β receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogene 30:3682–3693. https://doi.org/10.1038/onc.2011.85

    Article  CAS  PubMed  Google Scholar 

  28. Ma X, Jana SS, Anne Conti M et al (2010) Ablation of Nonmuscle Myosin II-B and II-C Reveals a Role for Nonmuscle Myosin II in Cardiac Myocyte Karyokinesis. Mol Biol Cell 21:3952–3962. https://doi.org/10.1091/mbc.e10-04-0293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cai T, Chen X, Wang R, Xu H, You Y, Zhang T, Lan MS, Notkins AL (2011) Expression of Insulinoma-Associated 2 (INSM2) in Pancreatic Islet Cells Is Regulated by the Transcription Factors Ngn3 and NeuroD1. Endocrinology 152:1961–1969. https://doi.org/10.1210/en.2010-1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We thank Houria Abbas, Patrick Ledudal, and Dr. Jérôme Barré from the Centre de Ressources Biologiques of the Centre Hospitalier Intercommunal de Créteil for the DNA extraction and samples conservation. This study and AH were funded by l’Agence Nationale de la Recherche (ANR-12-BSV1-0004-01). AH was also funded by la Fondation du Souffle et le Fonds de Recherche en Santé Respiratoire.

Author information

Authors and Affiliations

Authors

Contributions

Drs. Hadchouel, Besmond, and Pr Delacourt conceptualized and designed the study. Drs. Hadchouel, Decobert, and Pr Delacourt contributed to acquisition and interpretation of data. Dr. Hadchouel and Pr Delacourt drafted the initial manuscript. Drs Hadchouel, Decobert, Besmond, and Pr Delacourt reviewed and revised the manuscript, and all authors approved the final manuscript as submitted.

Corresponding author

Correspondence to Alice Hadchouel.

Ethics declarations

Signed written informed consent was obtained from the parents and the study was approved by the local ethics committee (CPP Île-de-France IX).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Peter de Winter

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Peter de Winter

Electronic supplementary material

ESM 1

(DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadchouel, A., Decobert, F., Besmond, C. et al. Exome sequencing of extreme phenotypes in bronchopulmonary dysplasia. Eur J Pediatr 179, 579–586 (2020). https://doi.org/10.1007/s00431-019-03535-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-019-03535-0

Keywords

Navigation