Skip to main content

Advertisement

Log in

Genetic variants of ADAM17 are implicated in the pathological process of Kawasaki disease and secondary coronary artery lesions via the TGF-β/SMAD3 signaling pathway

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Kawasaki disease (KD) is a systemic vasculitis childhood disease frequently complicating coronary artery lesions (CALs). Recently, the gene encoding a disintegrin and metalloprotease 17 (ADAM17) was found to modify vascular pathology in humans by differentially regulating the transforming growth factor-β (TGF-β) signaling pathway, which affects KD/CAL susceptibility. To explore the potential role of ADAM17 in KD occurrence and outcomes, we investigated the association of 28 single nucleotide polymorphisms (SNPs) in ADAM17 and three pathway genes of TGF-β signaling with KD phenotypes in a Han Chinese population, including 392 KD patients and 421 non-KD controls. Three ADAM17 SNPs showed an association with KD risk, which was further confirmed by haplotype analysis. The effect of ADAM17 on KD was also shown by multi-variable logistic regression analysis. In two-locus model analyses with SNPs in ADAM17 and TGF-β signaling pathway genes, stronger compound effects on the risk of KD and secondary CAL formation were observed relative to comparable single SNPs.

Conclusion: Our results suggest that ADAM17 contributes to the KD risk and is involved in secondary CAL formation via the TGF-β/SMAD3 signaling pathway. This further enriches our understanding of the importance of the signaling pathway in KD occurrence and outcomes.

What is Known:

The transforming growth factor (TGF)-β/SMAD3 signaling pathway greatly influences susceptibility to Kawasaki disease (KD) and secondary coronary artery lesions (CALs) and/or the treatment response of intravenous immunoglobulin.

A disintegrin and metalloprotease 17 (ADAM17) effectively reduces TGF-β signaling by cleaving TGF-β receptor type-1, while ADAM17 genetic variants modify human vascular pathology by differentially regulating this signaling although it is unknown whether ADAM17 contributes to KD phenotypes.

What is New:

ADAM17 genetic variants were shown to be associated with KD risk, even when excluding the influence of TGF-β signaling pathway genes, suggesting that ADAM17 is an important KD susceptibility-related genetic locus.

The more significant compound effects of two-locus models, combining single nucleotide polymorphisms (SNPs) in ADAM17 and other TGF-β signaling pathway genes including TGFB2 and SMAD3, on KD phenotypes relative to single SNPs suggest that ADAM17 is also involved in secondary CAL formation and confers the risk of KD/CALs via the TGF-β/SMAD3 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADAM17:

A disintegrin and metalloprotease 17

BLK:

B lymphoid kinase

CALs:

Coronary artery lesions

FCGR2A:

Fc fragment of IgG, low affinity IIa, receptor

HLA:

Major histocompatibility complex

IVIG:

Intravenous immunoglobulin

KD:

Kawasaki disease

NFAT:

Nuclear factor of activated T cells

SMAD3:

Mothers against decapentaplegic, drosophila, homolog of, 3

SNP:

Single nucleotide polymorphism

TFBS:

Transcription factor binding site

TGFB2:

Transforming growth factor beta-2

TGF-β:

Transforming growth factor-β

TGFBR1:

TGF-beta receptor type-1

TGFBR2:

TGF-beta receptor type-2

References

  1. Borzutzky A, Hoyos-Bachiloglu R, Cerda J, Talesnik E (2012) Rising hospitalization rates of Kawasaki disease in Chile between 2001 and 2007. Rheumatol Int 32:2491–2495. doi:10.1007/s00296-011-2050-4

    Article  PubMed  Google Scholar 

  2. Bujak M, Ren G, Kweon HJ, Dobaczewski M, Reddy A, Taffet G, Wang XF, Frangogiannis NG (2007) Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116:2127–2138

    Article  CAS  PubMed  Google Scholar 

  3. Chang CJ, Kuo HC, Chang JS, Lee JK, Tsai FJ, Khor CC, Chang LC, Chen SP, Ko TM, Liu YM, Chen YJ, Hong YM, Jang GY, Hibberd ML, Kuijpers T, Burgner D, Levin M, Burns JC, Davila S, International Kawasaki Disease Genetics Consortium, Korean Kawasaki Disease Genetics Consortium, Taiwan Kawasaki Disease Genetics Consortium, Chen YT, Chen CH, Wu JY, Lee YC (2013) Replication and meta-analysis of GWAS identified susceptibility loci in Kawasaki disease confirm the importance of B lymphoid tyrosine kinase (BLK) in disease susceptibility. PLoS One 8, e72037. doi:10.1371/journal.pone.0072037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choi YM, Shim KS, Yoon KL, Han MY, Cha SH, Kim SK, Jung JH (2012) Transforming growth factor beta receptor II polymorphisms are associated with Kawasaki disease. Korean J Pediatr 55:18–23. doi:10.3345/kjp.2012.55.1.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Du ZD, Zhao D, Du J, Zhang YL, Lin Y, Liu C, Zhang T, Beijing Kawasaki Research Group (2007) Epidemiologic study on Kawasaki disease in Beijing from 2000 through 2004. Pediatr Infect Dis J 26:449–451

    Article  Google Scholar 

  6. Duan J, Lou J, Zhang Q, Ke J, Qi Y, Shen N, Zhu B, Zhong R, Wang Z, Liu L, Wu J, Wang W, Gong F, Miao X (2014) A genetic variant rs1801274 in FCGR2A as a potential risk marker for Kawasaki disease: a case-control study and meta-analysis. PLoS One 9, e103329. doi:10.1371/journal.pone.0103329

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harnden A, Alves B, Sheikh A (2002) Rising incidence of Kawasaki disease in England: analysis of hospital admission data. BMJ 324:1424–1425

    Article  PubMed  PubMed Central  Google Scholar 

  8. Holman RC, Belay ED, Christensen KY, Folkema AM, Steiner CA, Schonberger LB (2010) Hospitalizations for Kawasaki syndrome among children in the United States, 1997-2007. Pediatr Infect Dis J 29:483–488. doi:10.1097/INF.0b013e3181cf8705

    PubMed  Google Scholar 

  9. Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, Kazue T, Eto G, Yamakawa R (1996) Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation 94:1379–1385

    Article  CAS  PubMed  Google Scholar 

  10. Kawasaki K, Freimuth J, Meyer DS, Lee MM, Tochimoto-Okamoto A, Benzinou M, Clermont FF, Wu G, Roy R, Letteboer TG, Ploos van Amstel JK, Giraud S, Dupuis-Girod S, Lesca G, Westermann CJ, Coffey RJ Jr, Akhurst RJ (2014) Genetic variants of Adam17 differentially regulate TGFβ signaling to modify vascular pathology in mice and humans. Proc Natl Acad Sci U S A 111:7723–7728. doi:10.1073/pnas.1318761111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawasaki T (1967) Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Arerugi 16:178–222

    CAS  PubMed  Google Scholar 

  12. Khor CC, Davila S, Breunis WB, Lee YC, Shimizu C, Wright VJ, Yeung RS, Tan DE, Sim KS, Wang JJ, Wong TY, Pang J, Mitchell P, Cimaz R, Dahdah N, Cheung YF, Huang GY, Yang W, Park IS, Lee JK, Wu JY, Levin M, Burns JC, Burgner D, Kuijpers TW, Hibberd ML, Hong Kong–Shanghai Kawasaki Disease Genetics Consortium, Korean Kawasaki Disease Genetics Consortium, Taiwan Kawasaki Disease Genetics Consortium, International Kawasaki Disease Genetics Consortium, US Kawasaki Disease Genetics Consortium, Blue Mountains Eye Study (2011) Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet 43:1241–1246. doi:10.1038/ng.981

    Article  CAS  PubMed  Google Scholar 

  13. Kim GB, Han JW, Park YW, Song MS, Hong YM, Cha SH, Kim DS, Park S (2014) Epidemiologic features of Kawasaki disease in South Korea: data from nationwide survey, 2009-2011. Pediatr Infect Dis J 33:24–27. doi:10.1097/INF.0000000000000010

    Article  PubMed  Google Scholar 

  14. Kuo HC, Onouchi Y, Hsu YW, Chen WC, Huang JD, Huang YH, Yang YL, Chao MC, Yu HR, Juan YS, Kuo CM, Yang KD, Huang JS, Chang WC (2011) Polymorphisms of transforming growth factor-β signaling pathway and Kawasaki disease in the Taiwanese population. J Hum Genet 56:840–845. doi:10.1038/jhg.2011.113

    Article  CAS  PubMed  Google Scholar 

  15. Lee YC, Kuo HC, Chang JS, Chang LY, Huang LM, Chen MR, Liang CD, Chi H, Huang FY, Lee ML, Huang YC, Hwang B, Chiu NC, Hwang KP, Lee PC, Chang LC, Liu YM, Chen YJ, Chen CH, Taiwan Pediatric ID Alliance, Chen YT, Tsai FJ, Wu JY (2012) Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet 44:522–525. doi:10.1038/ng.2227

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Xie J, He L, Wang Y, Duan Z, Yang H, Wang Q (2015) Identification of ADAM10 and ADAM17 with potential roles in the spermatogenesis of the Chinese mitten crab, Eriocheir sinensis. Gene 562:117–127. doi:10.1016/j.gene.2015.02.060

    Article  CAS  PubMed  Google Scholar 

  17. Liu C, Xu P, Lamouille S, Xu J, Derynck R (2009) TACE-mediated ectodomain shedding of the type I TGF-beta receptor downregulates TGF-beta signaling. Mol Cell 35:26–36. doi:10.1016/j.molcel.2009.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lou J, Xu S, Zou L, Zhong R, Zhang T, Sun Y, Lu X, Liu L, Li C, Wang L, Xiong G, Wang W, Gong F, Wu J (2012) A functional polymorphism, rs28493229, in ITPKC and risk of Kawasaki disease: an integrated meta-analysis. Mol Biol Rep 39:11137–11144. doi:10.1007/s11033-012-2022-0

    Article  CAS  PubMed  Google Scholar 

  19. Lue HC, Chen LR, Lin MT, Chang LY, Wang JK, Lee CY, Wu MH (2014) Epidemiological features of Kawasaki disease in Taiwan, 1976-2007: results of five nationwide questionnaire hospital surveys. Pediatr Neonatol 55:92–96. doi:10.1016/j.pedneo.2013.07.010

    Article  PubMed  Google Scholar 

  20. Ma XJ, Yu CY, Huang M, Chen SB, Huang MR, Huang GY; Shanghai Kawasaki Research Group (2010) Epidemiologic features of Kawasaki disease in Shanghai from 2003 through 2007. Chin Med J (Engl) 123:2629–2634

    Google Scholar 

  21. Makino N, Nakamura Y, Yashiro M, Ae R, Tsuboi S, Aoyama Y, Kojo T, Uehara R, Kotani K, Yanagawa H (2015) Descriptive epidemiology of Kawasaki disease in Japan, 2011-2012: from the results of the 22nd nationwide survey. J Epidemiol 25:239–245. doi:10.2188/jea.JE20140089

    Article  PubMed  Google Scholar 

  22. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, Shulman ST, Bolger AF, Ferrieri P, Baltimore RS, Wilson WR, Baddour LM, Levison ME, Pallasch TJ, Falace DA, Taubert KA, Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association (2004) Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young. Pediatrics 114:1708–1733

    Article  PubMed  Google Scholar 

  24. Niu A, Wen Y, Liu H, Zhan M, Jin B, Li YP (2013) Src mediates the mechanical activation of myogenesis by activating TNFα-converting enzyme. J Cell Sci 126:4349–4357. doi:10.1242/jcs.125328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Onouchi Y (2012) Genetics of Kawasaki disease: what we know and don’t know. Circ J 76:1581–1586

    Article  CAS  PubMed  Google Scholar 

  26. Onouchi Y, Gunji T, Burns JC, Shimizu C, Newburger JW, Yashiro M, Nakamura Y, Yanagawa H, Wakui K, Fukushima Y, Kishi F, Hamamoto K, Terai M, Sato Y, Ouchi K, Saji T, Nariai A, Kaburagi Y, Yoshikawa T, Suzuki K, Tanaka T, Nagai T, Cho H, Fujino A, Sekine A, Nakamichi R, Tsunoda T, Kawasaki T, Nakamura Y, Hata A (2008) ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 40:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Onouchi Y, Ozaki K, Buns JC, Shimizu C, Hamada H, Honda T, Terai M, Honda A, Takeuchi T, Shibuta S, Suenaga T, Suzuki H, Higashi K, Yasukawa K, Suzuki Y, Sasago K, Kemmotsu Y, Takatsuki S, Saji T, Yoshikawa T, Nagai T, Hamamoto K, Kishi F, Ouchi K, Sato Y, Newburger JW, Baker AL, Shulman ST, Rowley AH, Yashiro M, Nakamura Y, Wakui K, Fukushima Y, Fujino A, Tsunoda T, Kawasaki T, Hata A, Nakamura Y, Tanaka T (2010) Common variants in CASP3 confer susceptibility to Kawasaki disease. Hum Mol Genet 19:2898–2906. doi:10.1093/hmg/ddq176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Onouchi Y, Ozaki K, Burns JC, Shimizu C, Terai M, Hamada H, Honda T, Suzuki H, Suenaga T, Takeuchi T, Yoshikawa N, Suzuki Y, Yasukawa K, Ebata R, Higashi K, Saji T, Kemmotsu Y, Takatsuki S, Ouchi K, Kishi F, Yoshikawa T, Nagai T, Hamamoto K, Sato Y, Honda A, Kobayashi H, Sato J, Shibuta S, Miyawaki M, Oishi K, Yamaga H, Aoyagi N, Iwahashi S, Miyashita R, Murata Y, Sasago K, Takahashi A, Kamatani N, Kubo M, Tsunoda T, Hata A, Nakamura Y, Tanaka T, Japan Kawasaki Disease GenomeConsortium, US Kawasaki Disease Genetics Consortium (2012) A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet 44:517–521. doi:10.1038/ng.2220

    Article  CAS  PubMed  Google Scholar 

  29. Palazuelos J, Crawford HC, Klingener M, Sun B, Karelis J, Raines EW, Aguirre A (2014) TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination. J Neurosci 34:11884–11896. doi:10.1523/JNEUROSCI.1220-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poon CE, Madawala RJ, Day ML, Murphy CR (2015) EpCAM is decreased but is still present in uterine epithelial cells during early pregnancy in the rat: potential mechanism for maintenance of mucosal integrity during implantation. Cell Tissue Res 359:655–664. doi:10.1007/s00441-014-2017-3

    Article  CAS  PubMed  Google Scholar 

  31. Shimizu C, Jain S, Davila S, Hibberd ML, Lin KO, Molkara D, Frazer JR, Sun S, Baker AL, Newburger JW, Rowley AH, Shulman ST, Burgner D, Breunis WB, Kuijpers TW, Wright VJ, Levin M, Eleftherohorinou H, Coin L, Popper SJ, Relman DA, Fury W, Lin C, Mellis S, Tremoulet AH, Burns JC (2011) Transforming growth factor-beta signaling pathway in patients with Kawasaki disease. Circ Cardiovasc Genet 4:16–25. doi:10.1161/CIRCGENETICS.110.940858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shimizu C, Kim J, Stepanowsky P, Trinh C, Trinh C, Lau HD, Akers JC, Chen C, Kanegaye JT, Tremoulet A, Ohno-Machado L, Burns JC (2013) Differential expression of miR-145 in children with Kawasaki disease. PLoS One 8, e58159. doi:10.1371/journal.pone.0058159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shimizu C, Oharaseki T, Takahashi K, Kottek A, Franco A, Burns JC (2013) The role of TGF-β and myofibroblasts in the arteritis of Kawasaki disease. Hum Pathol 44:189–198. doi:10.1016/j.humpath.2012.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh S, Vignesh P, Burgner D (2015) The epidemiology of Kawasaki disease: a global update. Arch Dis Child 100:1084–1088. doi:10.1136/archdischild-2014-307536

    Article  PubMed  Google Scholar 

  35. Villaverde-Hueso A, Alonso V, Morales-Piga A, Hens-Pérez M, Abaitua I, Posada-de-la-Paz M (2014) Childhood vasculitis hospitalizations in Spain, 1997-2011. Georgian Med News 230:65–72

    PubMed  Google Scholar 

  36. Wallace CA, French JW, Kahn SJ, Sherry DD (2000) Initial intravenous gammaglobulin treatment failure in Kawasaki disease. Pediatrics 105:e78

    Article  CAS  PubMed  Google Scholar 

  37. Wu W, Misra RS, Russell JQ, Flavell RA, Rincón M, Budd RC (2006) Proteolytic regulation of nuclear factor of activated T (NFAT) c2 cells and NFAT activity by caspase-3. J Biol Chem 281:10682–10690

    Article  CAS  PubMed  Google Scholar 

  38. Xing Y, Wang H, Liu X, Yu X, Chen R, Wang C, Yu X, Sun L (2014) Meta-analysis of the relationship between single nucleotide polymorphism rs72689236 of caspase-3 and Kawasaki disease. Mol Biol Rep 41:6377–6381. doi:10.1007/s11033-014-3517-7

    Article  CAS  PubMed  Google Scholar 

  39. Yan Y, Ma Y, Liu Y, Hu H, Shen Y, Zhang S, Ma Y, Tao D, Wu Q, Peng Q, Yang Y (2013) Combined analysis of genome-wide-linked susceptibility loci to Kawasaki disease in Han Chinese. Hum Genet 132:669–680. doi:10.1007/s00439-013-1279-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all the participants including the children, their parents, and the physicians who provided clinical data for the study. This study was supported by the Science & Technology Department Program of Sichuan Province (No. 2013sz0040) and the Health Department Program of Sichuan Province, China (No. 150197)

Authors’ contribution

QP cared for the patient and was responsible for gathering clinical data. HL, YY, and QP designed the study. YD performed the echocardiography of the patients with KD. QP, XY, and XL were responsible for the genetic experiment. QP performed the statistical analysis and drafted the manuscript. HL and YY made a critical revision. All of the authors discussed the content of the manuscript and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanmin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the Ethics Committee of Clinical Trials and Biomedical Research of Sichuan University and Ethical Review Board of the Sichuan Provincial People’s Hospital, China, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Written informed consent was obtained from the parents of all the subjects who were studied prior to inclusion in the study according to the Declaration of Helsinki.

Additional information

Communicated by Jaan Toelen

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 45 kb)

ESM 2

(DOCX 43 kb)

ESM 3

(DOCX 23 kb)

ESM 4

(DOCX 48 kb)

ESM 5

(DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Deng, Y., Yang, X. et al. Genetic variants of ADAM17 are implicated in the pathological process of Kawasaki disease and secondary coronary artery lesions via the TGF-β/SMAD3 signaling pathway. Eur J Pediatr 175, 705–713 (2016). https://doi.org/10.1007/s00431-016-2696-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-016-2696-8

Keywords

Navigation