Skip to main content
Log in

Early amplitude-integrated EEG monitoring 6 h after birth predicts long-term neurodevelopment of asphyxiated late preterm infants

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The present study aimed to assess the prognostic value of early amplitude-integrated electroencephalogram (aEEG) in late preterm infants who were born at a gestational age between 34 0/7 and 36 6/7 weeks for the prediction of neurobehavioral development. Late preterm infants (n = 170) with normal, mild, and severe asphyxia underwent continuous recording of aEEG for 4–6 h starting 6–8 h after delivery. The recordings were analyzed for background pattern, sleep-wake cycle (SWC), and seizures. Survivors were assessed at 18 months by neurological examination and Bayley Scales of Infant Development II. The incidence of adverse neurological outcome in the asphyxia group was significantly higher than in the normal group. For late preterm infants in the asphyxia group, abnormal aEEG pattern had a predictive potential of neurological outcomes with sensitivity of 78.57 % (specificity, 87.80 %; positive predictive value [PPV], 68.75 %; negative predictive value [NPV], 92.31 %; power, 85.45 %). Non-SWC and intermediate SWC significantly were increased (25.45 and 52.73 %, respectively) in the asphyxia group vs. the normal group. SWC pattern had neurological prognosis value in the asphyxia group with sensitivity of 64.29 % (specificity, 87.80 %; PPV, 64.29 %; NPV, 87.80 %; power, 81.82 %).

Conclusion: Early aEEG patterns are important determinants of long-term prognosis of neurodevelopmental outcome in asphyxiated late preterm infants.

What is Known:

• Perinatal asphyxia has been reported to lead to adverse long-term neurological outcome of late preterm infants. Early amplitude-integrated EEG (aEEG) is a valuable method in predicting the long-term prognosis within the first 6 h of birth in the neonatal intensive care units.

What is New:

• The results suggest that the aEEG pattern is an important determinant of long-term prognosis of neurodevelopmental outcome in asphyxiated late preterm infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

aEEG:

Amplitude-integrated electroencephalogram

BSID-II:

Bayley Scales of Infant Development II

BS:

Burst suppression

CLV:

Continuous extremely low voltage

CNV:

Continuous normal voltage

DNV:

Discontinuous normal voltage

FT:

Flat tracing

FPz:

Forehead central zone

GA:

Gestational age

NPV:

Negative predictive value

NICU:

Neonatal intensive care units

PA:

Postnatal age

PDI:

Psychomotor Development Index

PPV:

Positive predictive value

SWC:

Sleep-wake cycle

References

  1. Adams-Chapman I (2006) Neurodevelopmental outcome of the late preterm infant. Clin Perinatol 33(4):947–964. doi:10.1016/j.clp.2006.09.004

    Article  PubMed  Google Scholar 

  2. Bayley N (1993) Bayley scales of infant development. 2nd edn. The Psychological Corporation, San Antonio

  3. Bell AH, Greisen G, Pryds O (1993) Comparison of the effects of phenobarbitone and morphine administration on EEG activity in preterm babies. Acta Paediatr 82(1):35–39

    Article  CAS  PubMed  Google Scholar 

  4. Burdjalov VF, Baumgart S, Spitzer AR (2003) Cerebral function monitoring: a new scoring system for the evaluation of brain maturation in neonates. Pediatr 112(4):855–861

    Article  Google Scholar 

  5. Chyi LJ, Lee HC, Hintz SR, Gould JB, Sutcliffe TL (2008) School outcomes of late preterm infants: special needs and challenges for infants born at 32 to 36 weeks gestation. J Pediatr 153(1):25–31. doi:10.1016/j.jpeds.2008.01.027

    Article  PubMed  Google Scholar 

  6. Cseko AJ, Bango M, Lakatos P, Kardasi J, Pusztai L, Szabo M (2013) Accuracy of amplitude-integrated electroencephalography in the prediction of neurodevelopmental outcome in asphyxiated infants receiving hypothermia treatment. Acta Paediatr 102(7):707–711. doi:10.1111/apa.12226

    Article  CAS  PubMed  Google Scholar 

  7. Deng L, Li X, Shi Z, Jiang P, Chen D, Ma L (2012) Maternal and perinatal outcome in cases of fulminant viral hepatitis in late pregnancy. Int J Gynaecol Obstetrics:Off Organ Int Fed Gynaecol Obstet 119(2):145–148. doi:10.1016/j.ijgo.2012.05.041

    Article  Google Scholar 

  8. Eaton DM, Toet M, Livingston J, Smith I, Levene M (1994) Evaluation of the Cerebro Trac 2500 for monitoring of cerebral function in the neonatal intensive care. Neuropediatrics 25(3):122–128

    Article  CAS  PubMed  Google Scholar 

  9. Eeg-Olofsson O (1980) Longitudinal developmental course of electrical activity of brain. Brain Dev 2(1):33–44

    Article  CAS  PubMed  Google Scholar 

  10. Ersdal HL, Mduma E, Svensen E, Perlman J (2012) Birth asphyxia: a major cause of early neonatal mortality in a Tanzanian rural hospital. Pediatr 129(5):e1238–1243. doi:10.1542/peds. 2011-3134

    Article  Google Scholar 

  11. Garfinkle J, Shevell MI (2011) Predictors of outcome in term infants with neonatal seizures subsequent to intrapartum asphyxia. J Child Neurol 26(4):453–459. doi:10.1177/0883073810382907

    Article  PubMed  Google Scholar 

  12. Gucuyener K, Beken S, Ergenekon E, Soysal S, Hirfanoglu I, Turan O, Unal S, Altuntas N, Kazanci E, Kulali F, Koc E, Turkyilmaz C, Onal E, Atalay Y (2012) Use of amplitude-integrated electroencephalography (aEEG) and near infrared spectroscopy findings in neonates with asphyxia during selective head cooling. Brain Dev 34(4):280–286. doi:10.1016/j.braindev.2011.06.005

    Article  PubMed  Google Scholar 

  13. Hagberg B, Hagberg G, Olow I (1975) The changing panorama of cerebral palsy in Sweden 1954–1970. I. Analysis of the general changes. Acta Paediatr Scand 64(2):187–192

    Article  CAS  PubMed  Google Scholar 

  14. Hagberg B, Hagberg G, Olow I (1993) The changing panorama of cerebral palsy in Sweden. VI. Prevalence and origin during the birth year period 1983–1986. Acta Paediatr 82(4):387–393

    Article  CAS  PubMed  Google Scholar 

  15. Hellstrom-Westas L, Klette H, Thorngren-Jerneck K, Rosen I (2001) Early prediction of outcome with aEEG in preterm infants with large intraventricular hemorrhages. Neuropediatrics 32(6):319–324. doi:10.1055/s-2001-20408

    CAS  PubMed  Google Scholar 

  16. Hellstrom-Westas L, Rosen I, Svenningsen NW (1991) Cerebral function monitoring during the first week of life in extremely small low birthweight (ESLBW) infants. Neuropediatrics 22(1):27–32. doi:10.1055/s-2008-1071411

    Article  CAS  PubMed  Google Scholar 

  17. Hellstrom-Westas L, Rosen I, Svenningsen NW (1995) Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed 72(1):F34–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B (2009) Deaths: final data for,2006. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics. Natl Vital Stat Syst 57(14):1–134

    Google Scholar 

  19. Holmes G, Rowe J, Hafford J, Schmidt R, Testa M, Zimmerman A (1982) Prognostic value of the electroencephalogram in neonatal asphyxia. Electroencephalogr Clin Neurophysiol 53(1):60–72

    Article  CAS  PubMed  Google Scholar 

  20. Kidokoro H, Kubota T, Hayashi N, Hayakawa M, Takemoto K, Kato Y, Okumura A (2010) Absent cyclicity on aEEG within the first 24 h is associated with brain damage in preterm infants. Neuropediatrics 41(6):241–245

    Article  CAS  PubMed  Google Scholar 

  21. Kinney HC (2006) The near-term (late preterm) human brain and risk for periventricular leukomalacia: a review. Semin Perinatol 30(2):81–88. doi:10.1053/j.semperi.2006.02.006

    Article  PubMed  Google Scholar 

  22. Laptook AR, Shankaran S, Ambalavanan N, Carlo WA, McDonald SA, Higgins RD, Das A, Hypothermia Subcommittee of the NNRN (2009) Outcome of term infants using Apgar scores at 10 minutes following hypoxic-ischemic encephalopathy. Pediatrics 124(6):1619–1626. doi:10.1542/peds.2009-0934

    Article  PubMed Central  PubMed  Google Scholar 

  23. Le Ray C, Audibert F, Goffinet F, Fraser W (2009) When to stop pushing: effects of duration of second-stage expulsion efforts on maternal and neonatal outcomes in nulliparous women with epidural analgesia. Am J Obstet Gynecol 201(4):361. doi:10.1016/j.ajog.2009.08.002, e361-367

    PubMed  Google Scholar 

  24. Lemmers PM, Zwanenburg RJ, Benders MJ, de Vries LS, Groenendaal F, van Bel F, Toet MC (2013) Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value? Pediatr Res 74(2):180–185. doi:10.1038/pr.2013.84

    Article  CAS  PubMed  Google Scholar 

  25. Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, Robertson RL, Volpe JJ, du Plessis AJ (2005) Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics 115(3):688–695. doi:10.1542/peds. 2004-1169

    Article  PubMed  Google Scholar 

  26. Ma X, Huang C, Lou S, Lv Q, Su W, Tan J, Wang Y, Wang X, Wu M, Xu T, Zhuang M, Du L, Provincial Collaborative Study Group for Late-Preterm I (2009) The clinical outcomes of late preterm infants: a multi-center survey of Zhejiang, China. J Perinat Med 37(6):695–699. doi:10.1515/JPM.2009.130

    Article  PubMed  Google Scholar 

  27. McCormick MC, Brooks-Gunn J, Buka SL, Goldman J, Yu J, Salganik M, Scott DT, Bennett FC, Kay LL, Bernbaum JC, Bauer CR, Martin C, Woods ER, Martin A, Casey PH (2006) Early intervention in low birth weight premature infants: results at 18 years of age for the Infant Health and Development Program. Pediatr 117(3):771–780. doi:10.1542/peds. 2005-1316

    Article  Google Scholar 

  28. Morse SB, Zheng H, Tang Y, Roth J (2009) Early school-age outcomes of late preterm infants. Pediatr 123(4):e622–629. doi:10.1542/peds. 2008-1405

    Article  Google Scholar 

  29. Murray DM, Ryan CA, Boylan GB, Fitzgerald AP, Connolly S (2006) Prediction of seizures in asphyxiated neonates: correlation with continuous video-electroencephalographic monitoring. Pediatr 118(1):41–46. doi:10.1542/peds. 2005-1524

    Article  Google Scholar 

  30. Olischar M, Klebermass K, Kuhle S, Hulek M, Kohlhauser C, Rucklinger E, Pollak A, Weninger M (2004) Reference values for amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks’ gestational age. Pediatr 113(1 Pt 1):e61–66

    Article  Google Scholar 

  31. Osredkar D, Toet MC, van Rooij LG, van Huffelen AC, Groenendaal F, de Vries LS (2005) Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. Pediatr 115(2):327–332. doi:10.1542/peds. 2004-0863

    Article  Google Scholar 

  32. Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ (2009) Increased risk of adverse neurological development for late preterm infants. J Pediatr 154(2):169–176. doi:10.1016/j.jpeds.2008.08.020

    Article  PubMed  Google Scholar 

  33. Raju TN (2006) The problem of late-preterm (near-term) births: a workshop summary. Pediatr Res 60(6):775–776. doi:10.1203/01.pdr.0000246074.73342.1e

    Article  PubMed  Google Scholar 

  34. Shankaran S, Pappas A, McDonald SA, Laptook AR, Bara R, Ehrenkranz RA, Tyson JE, Goldberg R, Donovan EF, Fanaroff AA, Das A, Poole WK, Walsh M, Higgins RD, Welsh C, Salhab W, Carlo WA, Poindexter B, Stoll BJ, Guillet R, Finer NN, Stevenson DK, Bauer CR, Eunice Kennedy Shriver National Institute of Child H, Human Development Neonatal Research N (2011) Predictive value of an early amplitude integrated electroencephalogram and neurologic examination. Pediatr 128(1):e112–120. doi:10.1542/peds.2010-2036

    Article  Google Scholar 

  35. Shany E, Goldstein E, Khvatskin S, Friger MD, Heiman N, Goldstein M, Karplus M, Galil A (2006) Predictive value of amplitude-integrated electroencephalography pattern and voltage in asphyxiated term infants. Pediatr Neurol 35(5):335–342. doi:10.1016/j.pediatrneurol.2006.06.007

    Article  PubMed  Google Scholar 

  36. Spitzmiller RE, Phillips T, Meinzen-Derr J, Hoath SB (2007) Amplitude-integrated EEG is useful in predicting neurodevelopmental outcome in full-term infants with hypoxic-ischemic encephalopathy: a meta-analysis. J Child Neurol 22(9):1069–1078. doi:10.1177/0883073807306258

    Article  PubMed  Google Scholar 

  37. Tekgul H, Bourgeois BF, Gauvreau K, Bergin AM (2005) Electroencephalography in neonatal seizures: comparison of a reduced and a full 10/20 montage. Pediatr Neurol 32(3):155–161. doi:10.1016/j.pediatrneurol.2004.09.014

    Article  PubMed  Google Scholar 

  38. ter Horst HJ, Sommer C, Bergman KA, Fock JM, van Weerden TW, Bos AF (2004) Prognostic significance of amplitude-integrated EEG during the first 72 hours after birth in severely asphyxiated neonates. Pediatr Res 55(6):1026–1033. doi:10.1203/01.pdr.0000127019.52562.8c

    Article  PubMed  Google Scholar 

  39. Thornberg E, Thiringer K (1990) Normal pattern of the cerebral function monitor trace in term and preterm neonates. Acta paediatr Scand 79(1):20–25

    Article  CAS  PubMed  Google Scholar 

  40. van Baar AL, Vermaas J, Knots E, de Kleine MJ, Soons P (2009) Functioning at school age of moderately preterm children born at 32 to 36 weeks’ gestational age. Pediatr 124(1):251–257. doi:10.1542/peds. 2008-2315

    Article  Google Scholar 

  41. van Laerhoven H, de Haan TR, Offringa M, Post B, van der Lee JH (2013) Prognostic tests in term neonates with hypoxic-ischemic encephalopathy: a systematic review. Pediatr 131(1):88–98. doi:10.1542/peds. 2012-1297

    Article  Google Scholar 

  42. van Leuven K, Groenendaal F, Toet MC, Schobben AF, Bos SA, de Vries LS, Rademaker CM (2004) Midazolam and amplitude-integrated EEG in asphyxiated full-term neonates. Acta Paediatr 93(9):1221–1227

    Article  PubMed  Google Scholar 

  43. van Rooij LG, Toet MC, Osredkar D, van Huffelen AC, Groenendaal F, de Vries LS (2005) Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 90(3):F245–251. doi:10.1136/adc.2004.064964

    Article  PubMed Central  PubMed  Google Scholar 

  44. Zhang D, Ding H, Liu L, Hou X, Sun G, Li L, Liu Y, Zhou C, Gu R, Luo Y (2013) The prognostic value of amplitude-integrated EEG in full-term neonates with seizures. PLoS One 8(11):e78960. doi:10.1371/journal.pone.0078960

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The investigators thank the patients and their parents, Dr. Lang Ya-qin (MD), pediatric graduate students and residents, and the staffs at the NICU of the Hangzhou Hospital of Nanjing Medical University for their help with patient recruitment and data collection. We thank Dr. Shen Fang from Mental Health Division of Tongde Hospital of Zhejiang Province for the help in neurobehavioral developmental assessment rating scale and statistical processing of data. The study was supported by the Zhejiang Science and Technology Project (no. 2010KYB085), the Medical and Health Technology Projects of Hangzhou (no. 2010A002), and Hangzhou Key Disciplines Fund.

Conflict of interest

We clarified that the authors have no conflict of interest for this study.

Authors Contribution

X.M.H. conceived the idea and designed the research with C.M.J, C.M.J and Y.H.Y analyzed the data and wrote the manuscript. Y.H.Y. and L.Q.C supplied theoretical background for the explanation,the others contributed to deta collected and recorded. All the authors contributed to discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Mei Huang.

Additional information

Communicated by Peter de Winter

Chun-Ming Jiang and Yi-Hua Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, CM., Yang, YH., Chen, LQ. et al. Early amplitude-integrated EEG monitoring 6 h after birth predicts long-term neurodevelopment of asphyxiated late preterm infants. Eur J Pediatr 174, 1043–1052 (2015). https://doi.org/10.1007/s00431-015-2490-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-015-2490-z

Keywords

Navigation