Skip to main content
Log in

Monitoring aspirin therapy in children after interventional cardiac catheterization: laboratory measures, dose response, and clinical outcomes

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Very few studies have investigated dose response of aspirin and agreement of different platelet function assays in children. One hundred five children were studied at baseline and after interventional cardiac catheterization during aspirin treatment and, in cases of aspirin resistance (AR), after dose increase. Results from arachidonate-induced aggregation (AA) were compared with aggregation induced by ADP, PFA-100 closure times (CTs), urinary 11-dehydro-thromboxane B2 (urinary 11-dhTxB2) levels, and Impact-R % surface coverage. Aspirin at 2–5 mg/kg/day inhibited platelet function in a large majority. While 19 % showed bruising and mild epistaxis, no thrombotic complications were recorded. AR was detected by AA in seven children (6.7 %). After dose increase, the majority showed inhibition by aspirin. Infants had higher urinary 11-dhTxB2 baseline levels; this assay showed some correlation with AA. Both assays manifested high sensitivity and specificity for aspirin while inferior results were found for the other assays. With the PFA-100, 15.2 % of patients were found to have AR, but this corresponded to AR by AA in only one of seven children.

Conclusion: While there was poor agreement among assays, AA and urinary 11-dhTxB2 show good specificity for the monitoring of aspirin therapy in children. Aspirin at 2–5 mg/kg inhibits platelet function; AR in children is rare and can be overcome by dose increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Arachidonate-induced aggregation

AR:

Aspirin resistance

ICC:

Interventional cardiac catheterization

IR:

Interquartile range

PFA-100 CT:

Platelet function analyser-100 closure time

Urinary 11-dhTxB2:

Urinary 11-dehydro-thromboxane B2

VWD:

von Willebrand disease

VWF:

von Willebrand factor

VWF:RCo:

VWF:ristocetin cofactor

References

  1. Adatia I, Barrow SE, Stratton PD, Miall-Allen VM, Ritter JM, Haworth SG (1993) Thromboxane A2 and prostacyclin biosynthesis in children and adolescents with pulmonary vascular disease. Circulation 88:2117–2122

    Article  CAS  PubMed  Google Scholar 

  2. Altman DG (1991) Practical statistics for medical research. Chapman and Hall, London, p 89

    Google Scholar 

  3. Andrews RE, Tulloh RM (2011) Interventional cardiac catheterisation in congenital heart disease. Semin Thromb Hemost 37:826–833

    Article  Google Scholar 

  4. Carcao MD, Blanchette VS, Dean JA et al (1998) The Platelet Function Analyzer (PFA-100): a novel in-vitro system for evaluation of primary haemostasis in children. Br J Haematol 101:70–73

    Article  CAS  PubMed  Google Scholar 

  5. Cattaneo M (2011) The clinical relevance of response variability to antiplatelet therapy. Hematol Am Soc Hematol Educ Program 2011:70–75

    Article  Google Scholar 

  6. Cholette JM, Mamikonian L, Alfieris GM, Blumberg N, Lerner NB (2010) Aspirin resistance following pediatric cardiac surgery. Thromb Res 126:200–206

    Article  CAS  PubMed  Google Scholar 

  7. Eikelboom JW, Hankey GJ, Thom J, on behalf of the Clopidogrel for High Atherothrombotic Risk and Ischemic Stabilization, Management and Avoidance (CHARISMA) Investigators et al (2008) Incomplete inhibition of thromboxane biosynthesis by acetylsalicylic acid: determinants and effect on cardiovascular risk. Circulation 118:1705–1712

    Article  CAS  PubMed  Google Scholar 

  8. Eikelboom JW, Hirsh J, Weitz JI, Johnson M, Yi Q, Yusuf S (2002) Aspirin resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation 105:1650–1655

    Article  CAS  PubMed  Google Scholar 

  9. Fontana P, Nolli S, Reber G, de Moerloose P (2006) Biological effects of aspirin and clopidogrel in a randomized cross-over study in 96 healthy volunteers. J Thromb Haemost 4:813–819

    Article  CAS  PubMed  Google Scholar 

  10. Gasparyan AY, Watson T, Lip GY (2008) The role of aspirin in cardiovascular prevention: implications of aspirin resistance. J Am Coll Cardiol 51:1829–1843

    Article  CAS  PubMed  Google Scholar 

  11. Gouya G, Jilma B, Niel M, Eichelberger B, Wolzt M, Panzer S (2009) Cross validation of aspirin effect in healthy individuals by Impact-R and PFA-100: a double blind randomized placebo controlled trial. Platelets 20:171–176

    Article  CAS  PubMed  Google Scholar 

  12. Gum PA, Kottke-Marchant K, Poggio ED et al (2001) Profile and prevalence of aspirin resistance in patients with cardiovascular disease. Am J Cardiol 88:230–235

    Article  CAS  PubMed  Google Scholar 

  13. Gum PA, Kottke-Merchant K, Welsh PA, White J, Topol EJ (2003) A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease. J Am Coll Cardiol 41:961–965

    Article  CAS  PubMed  Google Scholar 

  14. Gurbel PA, Bliden KP, DiChiara J et al (2007) Evaluation of dose-related effects of aspirin on platelet function: results from the Aspirin-Induced Platelet Effect (ASPECT) study. Circulation 115:3156–3164

    Article  CAS  PubMed  Google Scholar 

  15. Hankey GJ, Eikelboom JW (2006) Aspirin resistance. Lancet 367:606–617

    Article  CAS  PubMed  Google Scholar 

  16. Heistein LC, Scott WA, Zellers TM et al (2008) Aspirin resistance in children with heart disease at risk for thromboembolism: prevalence and possible mechanisms. Pediatr Cardiol 29:285–291

    Article  PubMed  Google Scholar 

  17. Jennings LK, White MM (2007) Platelet aggregation. In: Michelson AD (ed) Platelets, 2nd edn. Academic Press, San Diego, pp 495–507

    Chapter  Google Scholar 

  18. Jern C, Eriksson E, Tengborn L et al (1989) Changes of plasma coagulation and fibrinolysis in response to mental stress. Thromb Haemost 62:767–771

    CAS  PubMed  Google Scholar 

  19. Krumsdorf U, Ostermayer S, Billinger K et al (2004) Incidence and clinical course of thrombus formation on atrial septal defect and patient foramen ovale closure devices in 1,000 consecutive patients. J Am Coll Cardiol 43:302–309

    Article  PubMed  Google Scholar 

  20. Leonhardt A, Magsaam J, Goldner M, Kühl PG, Seyberth HW (1996) Biosynthesis of prostacyclin and thromboxane A2 during chronic hypoxaemia in children with cyanotic congenital heart disease. Eur J Clin Invest 26:1057–1061

    Article  CAS  PubMed  Google Scholar 

  21. Lepantalo A, Beer JH, Siljander P et al (2001) Variability in platelet response to collagen- comparison between whole blood perfusions, traditional platelet function tests and PFA-100. Thromb Res 103:123–133

    Article  CAS  PubMed  Google Scholar 

  22. Levine GN, Bates ER, Blankenship JC et al (2013) 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv 82:E266–E355

    Article  PubMed  Google Scholar 

  23. Li JS, Newburger JW (2010) Antiplatelet therapy in pediatric cardiovascular patients. Pediatr Cardiol 31:454–461

    Article  CAS  PubMed  Google Scholar 

  24. Lordkipanidzé M, Pharand C, Schampaert E, Turgeon J, Palisaitis DA, Diodati JG (2007) A comparison of six major platelet function tests to determine the prevalence of aspirin resistance in patients with stable coronary artery disease. Eur Heart J 28:1702–1708

    Article  PubMed  Google Scholar 

  25. Michelson AD, Cattaneo M, Eikelboom JW et al (2005) Platelet Physiology Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Hemostasis; Working Group on Aspirin Resistance. Aspirin resistance: position paper of the Working Group on Aspirin Resistance. J Thromb Haemost 3:1309–1311

    Article  CAS  PubMed  Google Scholar 

  26. Monagle P, Chan AK, Goldenberg NA et al (2004) Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Arch Dis Child 89:1168–1173

    Article  Google Scholar 

  27. Odou P, Barthélémy C, Robert H (2001) Influence of seven beverages on salicylate disposition in humans. J Clin Pharm Ther 26:187–193

    Article  CAS  PubMed  Google Scholar 

  28. Quiroga T, Goycoolea M, Panes O et al (2007) High prevalence of bleeders of unknown cause among patients with inherited mucocutaneous bleeding. A prospective study of 280 patients and 299 controls. Haematologica 92:357–365

    Article  PubMed  Google Scholar 

  29. Rand ML, Lanthier S, Trish D et al (2005) Incidence of aspirin “resistance” as determined using the PFA-100 in pediatric patients with arterial ischemic stroke. Blood 106:1882 (Abstract)

    Google Scholar 

  30. Sanderson S, Baglin T, Kinmonth AL (2005) Narrative review: aspirin resistance and its clinical implications. Ann Intern Med 142:370–380

    Article  CAS  PubMed  Google Scholar 

  31. Santilli F, Rocca B, De Cristofaro R et al (2009) Platelet cyclooxygenase inhibition by low-dose aspirin is not reflected consistently by platelet function assays: implications for aspirin “resistance”. J Am Coll Cardiol 53:667–677

    Article  CAS  PubMed  Google Scholar 

  32. Serebruany VL, Steinhubl SR, Berger PB et al (2005) Analysis of risk of bleeding complications after different doses of aspirin in 192,036 patients enrolled in 31 randomized controlled trials. Am J Cardiol 95:1218–1222

    Article  CAS  PubMed  Google Scholar 

  33. Shenkman B, Matetzky S, Fefer P et al (2008) Variable responsiveness to clopidogrel and aspirin among patients with acute coronary syndrome as assessed by platelet function tests. Thromb Res 122:336–345

    Article  CAS  PubMed  Google Scholar 

  34. Spectre G, Brill D, Gural A et al (2005) A new point-of-care method for monitoring anti-platelet therapy: application of the cone and plate(let) analyzer. Platelets 16:293–299

    Article  CAS  PubMed  Google Scholar 

  35. Strater R, Kurnik K, Heller C, Schobess R, Luigs P, Nowak-Göttl U (2001) Aspirin versus low-dose low-molecular-weight heparin: antithrombotic therapy in pediatric ischemic stroke patients. Stroke 32:2554–2558

    Article  CAS  PubMed  Google Scholar 

  36. Thom KE, Hanslik A, Male C (2011) Anticoagulation in children undergoing cardiac surgery. Semin Thromb Hemost 37:826–833

    Article  CAS  PubMed  Google Scholar 

  37. Toshima H, Sugihara H, Hamano H et al (2008) Spontaneous platelet aggregation in normal subject assessed by a laser light scattering method: an attempt at standardization. Platelets 19:293–299

    Article  CAS  PubMed  Google Scholar 

  38. Varnell CD Jr, Goldstein SL, Yee DL et al (2014) Age-related differences in urinary 11-dehydroxythromboxane B2 between infants, children, and adolescents: Another example of developmental hemostasis? Pediatr Blood Cancer. doi:10.1002/pbc.25089

    PubMed  Google Scholar 

  39. von Känel R, Preckel D, Zgraggen L et al (2004) The effect of natural habituation on coagulation responses to acute mental stress and recovery in men. Thromb Haemost 92:1327–1335

    Google Scholar 

  40. Yee DL, Dinu BR, Sun CW et al (2008) Low prevalence and assay discordance of “aspirin resistance” in children. Pediatr Blood Cancer 51:86–89

    Article  CAS  PubMed  Google Scholar 

  41. Zaitsu M, Hamasaki Y, Nishimura S, Matsuo M, Fujita I, Ishii E (2003) Thromboxane synthesis is increased by upregulation of cytosolic phospholipase A2 and cyclooxygenase-2 in peripheral polymorphonuclear leukocytes during bacterial infection in childhood. Am J Hematol 72:115–120

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schmugge.

Additional information

Communicated by David Nadal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmugge, M., Speer, O., Kroiss, S. et al. Monitoring aspirin therapy in children after interventional cardiac catheterization: laboratory measures, dose response, and clinical outcomes. Eur J Pediatr 174, 933–941 (2015). https://doi.org/10.1007/s00431-014-2485-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-014-2485-1

Keywords

Navigation