Advertisement

European Journal of Pediatrics

, Volume 174, Issue 1, pp 1–13 | Cite as

Developmental dyscalculia

  • Karin KucianEmail author
  • Michael von Aster
Review

Abstract

Numerical skills are essential in our everyday life, and impairments in the development of number processing and calculation have a negative impact on schooling and professional careers. Approximately 3 to 6 % of children are affected from specific disorders of numerical understanding (developmental dyscalculia (DD)). Impaired development of number processing skills in these children is characterized by problems in various aspects of numeracy as well as alterations of brain activation and brain structure. Moreover, DD is assumed to be a very heterogeneous disorder putting special challenges to define homogeneous diagnostic criteria. Finally, interdisciplinary perspectives from psychology, neuroscience and education can contribute to the design for interventions, and although results are still sparse, they are promising and have shown positive effects on behaviour as well as brain function.

Conclusion: In the current review, we are going to give an overview about typical and atypical development of numerical abilities at the behavioural and neuronal level. Furthermore, current status and obstacles in the definition and diagnostics of DD are discussed, and finally, relevant points that should be considered to make an intervention as successful as possible are summarized.

Keywords

Developmental dyscalculia Number processing Calculation Learning disability Therapy Learning 

Abbreviations

DD

Developmental dyscalculia

fMRI

Functional magnetic resonance imaging

IPS

Intraparietal sulcus

MRI

Magnetic resonance imaging

Notes

Conflict of interest

We, Karin Kucian and Michael von Aster, certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

References

  1. 1.
    Agrillo C, Piffer L, Bisazza A (2011) Number versus continuous quantity in numerosity judgments by fish. Cognition 119(2):281–287PubMedCrossRefGoogle Scholar
  2. 2.
    Alarcon M, DeFries JC, Light JG, Pennington BF (1997) A twin study of mathematics disability. J Learn Disabil 30(6):617–623PubMedCrossRefGoogle Scholar
  3. 3.
    APA (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Association, WashingtonGoogle Scholar
  4. 4.
    Arsalidou M, Taylor MJ (2011) Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage 54(3):2382–2393PubMedCrossRefGoogle Scholar
  5. 5.
    Ashkenazi S, Rosenberg-Lee M, Metcalfe AW, Swigart AG, Menon V (2013) Visuo-spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia 51(11):2305–2317PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Ashkenazi S, Rosenberg-Lee M, Tenison C, Menon V (2012) Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia. Dev Cogn Neurosci 2(Suppl 1):S152–S166PubMedCrossRefGoogle Scholar
  7. 7.
    Aunio P, Niemivirta M (2010) Predicting children’s mathematical performance in grade one by early numeracy. J Lean Individ Differ 20:427–435CrossRefGoogle Scholar
  8. 8.
    Baron-Cohen S, Murphy L, Chakrabarti B, Craig I, Mallya U, Lakatošová S, Rehnstrom K, Peltonen L, Wheelwright S, Allison C, Fisher SE, Warrier V (2014) A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: a preliminary study. PLoS One 9(5):e96374PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bartelet D, Vaessen A, Blomert L, Ansari D (2014) What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? J Exp Child Psychol 117:12–28PubMedCrossRefGoogle Scholar
  10. 10.
    Berl MM, Vaidya CJ, Gaillard WD (2006) Functional imaging of developmental and adaptive changes in neurocognition. NeuroImage 30(3):679–691PubMedCrossRefGoogle Scholar
  11. 11.
    Berteletti I, Jrm P, Booth JR (2014) Children with mathematical learning disability fail in recruiting verbal and numerical brain regions when solving simple multiplication problems. Cortex 57:143–155PubMedCrossRefGoogle Scholar
  12. 12.
    Booth JL, Siegler RS (2008) Numerical magnitude representations influence arithmetic learning. Child Dev 79(4):1016–1031PubMedCrossRefGoogle Scholar
  13. 13.
    Brankaer C, Ghesquière P, De Smedt B (2014) Children’s mapping between Non-symbolic and symbolic numerical magnitudes and its association with timed and untimed tests of mathematics achievement. PLoS One 9(4):e93565PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Butterworth B, Varma S, Laurillard D (2011) Dyscalculia: from brain to education. Science (New York, NY) 332(6033):1049–1053CrossRefGoogle Scholar
  15. 15.
    Butterworth B, Walsh V (2011) Neural basis of mathematical cognition. Curr Biol 21(16):R618–R621PubMedCrossRefGoogle Scholar
  16. 16.
    Cho S, Metcalfe AW, Young CB, Ryali S, Geary DC, Menon V (2012) Hippocampal-prefrontal engagement and dynamic causal interactions in the maturation of children’s fact retrieval. J Cogn Neurosci 24(9):1849–1866PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Cho S, Ryali S, Geary DC, Menon V (2011) How does a child solve 7+8? Decoding brain activity patterns associated with counting and retrieval strategies. Dev Sci 14(5):989–1001PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Christoff K, Gabrieli JDE (2000) The frontopolar cortex and human cognition: evidence for a rostocaudal hierachical organization within the human cortex. Psychobiology 28(2):168–186Google Scholar
  19. 19.
    Cohen Kadosh R, Dowker A, Heine A, Kaufmann L, Kucian K (2013) Interventions for improving numerical abilities: present and future. Trends Neurosci Educ 2:85–93CrossRefGoogle Scholar
  20. 20.
    de Hevia MD, Girelli L, Addabbo M, Macchi Cassia V (2014) Human Infants’ preference for left-to-right oriented increasing numerical sequences. PLoS One 9(5):e96412PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    De Smedt B, Holloway ID, Ansari D (2011) Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. NeuroImage 57(3):771–781PubMedCrossRefGoogle Scholar
  22. 22.
    Dehaene S (1992) Varieties of numerical abilities. Cognition 44:1–42PubMedCrossRefGoogle Scholar
  23. 23.
    Dehaene S (2003) The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends Cogn Sci 7:145–147PubMedCrossRefGoogle Scholar
  24. 24.
    Dehaene S, Bossini S, Giraux P (1993) The mental representation of parity and number magnitude. J Exp Psychol 122:371–396CrossRefGoogle Scholar
  25. 25.
    Dehaene S, Cohen JD (1995) Towards an anatomical and functional model of number processing. Math Cogn 1:83–120Google Scholar
  26. 26.
    Dehaene S, Cohen L (1997) Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex 33(2):219–250PubMedCrossRefGoogle Scholar
  27. 27.
    Desoete A, Roeyers H, De Clercq A (2004) Children with mathematics learning disabilities in Belgium. J Learn Disabil 37(1):50–61PubMedCrossRefGoogle Scholar
  28. 28.
    Dinkel PJ, Willmes K, Krinzinger H, Konrad K, Koten JW Jr (2013) Diagnosing developmental dyscalculia on the basis of reliable single case FMRI methods: promises and limitations. PLoS One 8(12):e83722PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Ehlert A, Schroeders U, Fritz-Stratmann A (2012) Criticism of the discrepancy criterion in the diagnosis of dyslexia and dyscalculia. Lernen und Lernstörungen 1(3):169–184CrossRefGoogle Scholar
  30. 30.
    Feigenson L, Dehaene S, Spelke E (2004) Core systems of number. Trends Cogn Sci 8(7):307–314PubMedCrossRefGoogle Scholar
  31. 31.
    Fias W, Menon V, Szucs D (2013) Multiple components of developmental dyscalculia. Trends Neurosci Educ 2:43–47CrossRefGoogle Scholar
  32. 32.
    Fischbach A, Schuchardt K, Brandenburg J, Klesczewski J, Balke-Melcher C, Schmidt C, Büttner G, Grube D, Mähler C, Hasselhorn M (2013) Prävalenz von Lernschwächen und Lernstörungen: Zur Bedeutung der Diagnosekriterien. Lernen und Lernstörungen 2(2):65–76CrossRefGoogle Scholar
  33. 33.
    Fischer MH (2012) A hierarchical view of grounded, embodied, and situated numerical cognition. Cogn Process 13(1):161–164CrossRefGoogle Scholar
  34. 34.
    Fischer MH, Brugger P (2011) When digits help digits: spatial-numerical associations point to finger counting as prime example of embodied cognition. Front Psychol 2:260PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Garland A, Low J, Burns K (2012) Large quantity discrimination by North Island robins (Petroica longipes). Animal Cognition:1–12Google Scholar
  36. 36.
    Grond U, Schweiter M, von Aster M (2013) Neuropsychologie numerischer Repräsentationen. In: Von Aster M, Lorenz J (eds) Rechenstörungen bei Kindern - Neurowissenschaft, Psychologie, Pädagogik, vol 2. Vandenhoeck & Ruprecht, GöttingenGoogle Scholar
  37. 37.
    Gross J, Hudson C, Price D (2009) The long term costs of numeracy difficulties. Every Child a Chance Trust and KPMG, LondonGoogle Scholar
  38. 38.
    Gross HJ, Pahl M, Si A, Zhu H, Tautz J, Zhang S (2009) Number-based visual generalisation in the honeybee. PLoS One 4(1):e4263PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Halberda J, Mazzocco MM, Feigenson L (2008) Individual differences in non-verbal number acuity correlate with maths achievement. Nature 455(7213):665–668PubMedCrossRefGoogle Scholar
  40. 40.
    Hauser MD, Carey S, Hauser LB (2000) Spontaneous number representation in semi-free-ranging rhesus monkeys. Proc Biol Sci 267(1445):829–833PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Ise E, Dolle K, Pixner S, Schulte-Körne G (2012) Effektive Förderung rechenschwacher Kinder: Eine Metaanalyse. Kindheit und Entwicklung 21(3):181–192CrossRefGoogle Scholar
  42. 42.
    Ise E, Schulte-Körne G (2013) Symptomatik, Diagnostik und Behandlung der Rechenstörung. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie 41(4):271–282PubMedCrossRefGoogle Scholar
  43. 43.
    Jansen BR, Hofman AD, Straatemeier M, van Bers BM, Raijmakers ME, van der Maas HL (2014) The role of pattern recognition in children’s exact enumeration of small numbers. Br J Dev Psychol 32(2):178–194PubMedCrossRefGoogle Scholar
  44. 44.
    Karmiloff-Smith A (1998) Development itself is the key to understanding developmental disorders. Trends Cogn Sci 2(10):389–398PubMedCrossRefGoogle Scholar
  45. 45.
    Käser T, Baschera G-M, Kohn J, Kucian K, Richtmann V, Grond U, Gross M, von Aster M (2013) Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition. Front Dev Psychol 4:1–13Google Scholar
  46. 46.
    Käser T, Busetto A, Baschera G-M, Kohn J, Kucian K, von Aster M, Gross M, Cerri S, Clancey W, Papadourakis G, Panourgia K (2012) Modelling and Optimizing the Process of Learning Mathematics. In: Intelligent Tutoring Systems, vol 7315. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp 389–398Google Scholar
  47. 47.
    Käser T, Kucian K, Ringwald M, Baschera G-M, Von Aster M, Gross M (2011) Therapy software for enhancing numerical cognition. In: Özyurt J, Anschütz A, Bernholt S, Lenk J (eds) Interdisciplinary perspectives on cognition, education and the brain - Hanse-Studies, vol 7. BIS-Verlag, Oldenburg, pp 207–216Google Scholar
  48. 48.
    Kaufmann L, Koppelstaetter F, Delazer M, Siedentopf C, Rhomberg P, Golaszewski S, Felber S, Ischebeck A (2005) Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study. NeuroImage 25(3):888–898PubMedCrossRefGoogle Scholar
  49. 49.
    Kaufmann L, Kucian K, von Aster M (2014) Development of the numerical brain. In: Dowker A, Cohen Kadosh R (eds) Oxford handbook of numerical cognition. Oxford University Press, OxfordGoogle Scholar
  50. 50.
    Kaufmann L, Mazzocco M, Dowker A, von Aster M, Göbel SM, Grabner RH, Henik A, Jordan NC, Karmiloff-Smith A, Kucian K, Noel M, Rubinsten O, Szucs D, Shalev R, Nuerk H (2013) Dyscalculia from a developmental and differential perspective Frontiers in Developmental Psychology 4: 516Google Scholar
  51. 51.
    Kaufmann L, Vogel S, Starke M, Kremser C, Schocke M, Wood G (2009) Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes. Behav Brain Funct 5(1):35PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Kaufmann L, von Aster M (2012) The diagnosis and management of dyscalculia. Dtsch Arztebl Int 109(45):767–778Google Scholar
  53. 53.
    Kaufmann L, Wood G, Rubinsten O, Henik A (2011) Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Dev Neuropsychol 36(6):763–787PubMedCrossRefGoogle Scholar
  54. 54.
    Kohn J, Wyschkon A, Ballaschk K, Ihle W, Esser G (2013) Verlauf von umschriebenen entwicklungsstörungen: eine 30-monats-follow-up-studie. Lernen und Lernstörungen 2(2):77–89CrossRefGoogle Scholar
  55. 55.
    Krajcsi A, Szabo E, Morocz IA (2013) Subitizing is sensitive to the arrangement of objects. Exp Psychol 60(4):227–234PubMedCrossRefGoogle Scholar
  56. 56.
    Krusche P, Uller C, Dicke U (2010) Quantity discrimination in salamanders. J Exp Biol 213(11):1822–1828. doi: 10.1242/jeb.039297 PubMedCrossRefGoogle Scholar
  57. 57.
    Kucian K, Ashkenazi SS, Hanggi J, Rotzer S, Jancke L, Martin E, von Aster M (2013) Developmental dyscalculia: a dysconnection syndrome? Brain Struct Funct 219(5):1721–1733PubMedGoogle Scholar
  58. 58.
    Kucian K, Grond U, Rotzer S, Henzi B, Schonmann C, Plangger F, Galli M, Martin E, von Aster M (2011) Mental number line training in children with developmental dyscalculia. NeuroImage 57(3):782–795PubMedCrossRefGoogle Scholar
  59. 59.
    Kucian K, Kaufmann L (2009) A developmental model of number representation. Behav Brain Sci 32(3/4):340–341CrossRefGoogle Scholar
  60. 60.
    Kucian K, Kaufmann L, von Aster M (2014) Brain correlates of numerical disabilities. In: Cohen MS, Dowker A (eds) Oxford handbook of numerical cognition. Oxford University Press, OxfordGoogle Scholar
  61. 61.
    Kucian K, Loenneker T, Dietrich T, Dosch M, Martin E, von Aster M (2006) Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study. Behav Brain Funct 2:31PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Kucian K, Loenneker T, Martin E, von Aster M (2011) Non-symbolic numerical distance effect in children with and without developmental dyscalculia: a parametric FMRI study. Dev Neuropsychol 36(6):741–762PubMedCrossRefGoogle Scholar
  63. 63.
    Kucian K, von Aster M, Loenneker T, Dietrich T, Martin E (2008) Development of neural networks for exact and approximate calculation: a FMRI study. Dev Neuropsychol 33(4):447–473PubMedCrossRefGoogle Scholar
  64. 64.
    Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546PubMedCrossRefGoogle Scholar
  65. 65.
    McCloskey M, Caramazza A, Basili A (1985) Cognitive mechanisms in number processing and calculation: evidence from dyscalculia. Brain Cogn 4(2):171–196PubMedCrossRefGoogle Scholar
  66. 66.
    Moeller K, Fischer U, Link T, Wasner M, Huber S, Cress U, Nuerk HC (2012) Learning and development of embodied numerosity. Cogn Process 13(Suppl 1):S271–S274PubMedCrossRefGoogle Scholar
  67. 67.
    Moser Opitz E (2007) Rechenschwäche/Dyskalkulie. Theoretische Klärungen und empirische Studien an betroffenen Schülerinnen und Schülern. Haupt, BernGoogle Scholar
  68. 68.
    Mussolin C, De Volder A, Grandin C, Schlogel X, Nassogne MC, Noel MP (2010) Neural correlates of symbolic number comparison in developmental dyscalculia. J Cogn Neurosci 22(5):860–874PubMedCrossRefGoogle Scholar
  69. 69.
    Nieder A (2012) Supramodal numerosity selectivity of neurons in primate prefrontal and posterior parietal cortices. Proc Natl Acad Sci U S A 109(29):11860–11865. doi: 10.1073/pnas.1204580109 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Notebaert K, Nelis S, Reynvoet B (2011) The magnitude representation of small and large symbolic numbers in the left and right hemisphere: an event-related fMRI study. J Cogn Neurosci 23(3):622–630PubMedCrossRefGoogle Scholar
  71. 71.
    Organization WH (2010) ICD-10. International Statistical Classification of Diseases and Related Health Problems 10th Revision; Chapter V: Mental and behavioral disorders (F81.2), vol 2. World Health Organization, GenevaGoogle Scholar
  72. 72.
    Parsons S, Bynner J (2005) Does numeracy matter more? National research and development centre for adult literacy and numeracy. Institute of Education, LondonGoogle Scholar
  73. 73.
    Pica P, Lemer C, Izard V, Dehaene S (2004) Exact and approximate arithmetic in an Amazonian indigene group. Science (New York, NY) 306(5695):499–503CrossRefGoogle Scholar
  74. 74.
    Pina V, Fuentes LJ, Castillo A, Diamantopoulou S (2014) Disentangling the effects of working memory, language, parental education and Non-verbal intelligence on children’s mathematical abilities. J Front Psychol 5:415Google Scholar
  75. 75.
    Price GR, Holloway I, Räsänen P, Vesterinen M, Ansari D (2007) Impaired parietal magnitude processing in developmental dyscalculia. Curr Biol 17(24):R1042–R1043PubMedCrossRefGoogle Scholar
  76. 76.
    Reigosa-Crespo V, Valdes-Sosa M, Butterworth B, Estevez N, Rodriguez M, Santos E, Torres P, Suarez R, Lage A (2012) Basic numerical capacities and prevalence of developmental dyscalculia: the Havana survey. Dev Psychol 48(1):123–135PubMedCrossRefGoogle Scholar
  77. 77.
    Rotzer S, Kucian K, Martin E, von Aster M, Klaver P, Loenneker T (2008) Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage 39(1):417–422PubMedCrossRefGoogle Scholar
  78. 78.
    Rotzer S, Loenneker T, Kucian K, Martin E, Klaver P, von Aster M (2009) Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia 47(13):2859–2865PubMedCrossRefGoogle Scholar
  79. 79.
    Rousselle L, Noël MP (2007) Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs non-symbolic number magnitude processing. Cognition 102(3):361–395PubMedCrossRefGoogle Scholar
  80. 80.
    Rubinsten O, Henik A (2009) Developmental dyscalculia: heterogeneity might not mean different mechanisms. Trends Cogn Sci 13(2):92–99PubMedCrossRefGoogle Scholar
  81. 81.
    Rugani R, Fontanari L, Simoni E, Regolin L, Vallortigara G (2009) Arithmetic in newborn chicks. Proc R Soc B Biol Sci 276(1666):2451–2460. doi: 10.1098/rspb.2009.0044 CrossRefGoogle Scholar
  82. 82.
    Rugani R, Kelly DM, Szelest I, Regolin L, Vallortigara G (2013) Is it only humans that count from left to right? Biol Lett 6(3):290–292CrossRefGoogle Scholar
  83. 83.
    Rykhlevskaia E, Uddin LQ, Kondos L, Menon V (2009) Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Front Hum Neurosci 3:51PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Schleger F, Landerl K, Muenssinger J, Draganova R, Reinl M, Kiefer-Schmidt I, Weiss M, Wacker-Gussmann A, Huotilainen M, Preissl H (2014) Magnetoencephalographic signatures of numerosity discrimination in fetuses and neonates. Dev Neuropsychol 39(4):316–329PubMedCrossRefGoogle Scholar
  85. 85.
    Shaki S, Fischer MH (2012) Multiple spatial mappings in numerical cognition. J Exp Psychol Hum Percept Perform 38(3):804–809PubMedCrossRefGoogle Scholar
  86. 86.
    Shaki S, Fischer MH, Petrusic WM (2009) Reading habits for both words and numbers contribute to the SNARC effect. Psychon Bull Rev 16(2):328–331PubMedCrossRefGoogle Scholar
  87. 87.
    Shalev RS, Manor O, Kerem B, Ayali M, Badichi N, Friedlander Y, Gross-Tsur V (2001) Developmental dyscalculia is a familial learning disability. J Learn Disabil 34(1):59–65PubMedCrossRefGoogle Scholar
  88. 88.
    Shalev RS, Manor O, Gross-Tsur V (2005) Developmental dyscalculia: a prospective 6-year follow-up. Dev Med Child Neurol 47(2):121–125PubMedCrossRefGoogle Scholar
  89. 89.
    Shalev RS, von Aster M (2008) Identification, classification, and prevalence of developmental dyscalculia. Encyclopedia of Language and Literacy Development: 1–9Google Scholar
  90. 90.
    Siegler RS, Booth JL (2004) Development of numerical estimation in young children. Child Dev 75(2):428–444PubMedCrossRefGoogle Scholar
  91. 91.
    Siegler RS, Opfer JE (2003) The development of numerical estimation: evidence for multiple representations of numerical quantity. Psychol Sci 14(3):237–243PubMedCrossRefGoogle Scholar
  92. 92.
    Siegler RS, Robinson M (1982) The development of numerical understanding. Adv Child Dev Behav 16:241–312PubMedCrossRefGoogle Scholar
  93. 93.
    Soltesz F, Szucs D, Dekany J, Markus A, Csepe V (2007) A combined event-related potential and neuropsychological investigation of developmental dyscalculia. Neurosci Lett 417(2):181–186PubMedCrossRefGoogle Scholar
  94. 94.
    Starkey P, Cooper RG Jr (1980) Perception of numbers by human infants. Science (New York, NY) 210(4473):1033–1035CrossRefGoogle Scholar
  95. 95.
    Stock P, Desoete A, Roeyers H (2010) Detecting children with arithmetic disabilities from kindergarten: evidence from a 3-year longitudinal study on the role of preparatory arithmetic abilities. J Learn Disabil 43(3):250–268. doi: 10.1177/0022219409345011 PubMedCrossRefGoogle Scholar
  96. 96.
    Szucs D, Devine A, Soltesz F, Nobes A, Gabriel F (2013) Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex 49:2674–2688PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Tosto M, Petrill S, Halberda J, Trzaskowski M, Tikhomirova T, Bogdanova O, Ly R, Wilmer J, Naiman D, Germine L, Plomin R, Kovas Y (2014) Why do we differ in number sense? Evidence from a genetically sensitive investigation. Intelligence 43(100):35–46PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Tsang JM, Dougherty RF, Deutsch GK, Wandell BA, Ben-Shachar M (2009) Frontoparietal white matter diffusion properties predict mental arithmetic skills in children. Proc Natl Acad Sci U S A 106(52):22546–22551PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    van Eimeren L, Niogi SN, McCandliss BD, Holloway ID, Ansari D (2008) White matter microstructures underlying mathematical abilities in children. Neuroreport 19(11):1117–1121PubMedCrossRefGoogle Scholar
  100. 100.
    Verdine BN, Irwin CM, Golinkoff RM, Hirsh-Pasek K (2014) Contributions of executive function and spatial skills to preschool mathematics achievement. J Exp Child Psychol 126:37–51PubMedCrossRefGoogle Scholar
  101. 101.
    von Aster M, Käser T, Kucian K, Gross M (2012) Calcularis - Rechenschwäche mit dem Computer begegnen. Schweizerische Zeitschrift für Heilpädagogik 6:32–36Google Scholar
  102. 102.
    von Aster M, Shalev R (2007) Number development and developmental dyscalculia. Dev Med Child Neurol 49:868–873CrossRefGoogle Scholar
  103. 103.
    von Aster M, Weinhold Zulauf M, Horn R (2006) ZAREKI-R (neuropsychological test battery for number processing and calculation in children), revidierte version. Harcourt Test Services, FrankfurtGoogle Scholar
  104. 104.
    Wheeler-Kingshott CA, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61(5):1255–1260PubMedCrossRefGoogle Scholar
  105. 105.
    Zamarian L, Ischebeck A, Delazer M (2009) Neuroscience of learning arithmetic - evidence from brain imaging studies. Neurosci Biobehav Rev 33:909–925PubMedCrossRefGoogle Scholar
  106. 106.
    Zebian S (2005) Linkages between number concepts, spatial thinking, and directionality of writig: the SNARC effect and the reverse SNARC effect in english and Arabic monoliterates, biliterates and illiterate Arabic speakers. J Cogn Cult 5(1–2):165–190CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for MR-ResearchUniversity Children’s Hospital ZurichZurichSwitzerland
  2. 2.Children’s Research CenterUniversity Children’s Hospital ZurichZurichSwitzerland
  3. 3.Department of Child and Adolescent PsychiatryDRK-Hospital Westend Berlin and Ernst von Bergmann Hospital PotsdamBerlinGermany

Personalised recommendations