Skip to main content

Advertisement

Log in

Developmental dyscalculia

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Numerical skills are essential in our everyday life, and impairments in the development of number processing and calculation have a negative impact on schooling and professional careers. Approximately 3 to 6 % of children are affected from specific disorders of numerical understanding (developmental dyscalculia (DD)). Impaired development of number processing skills in these children is characterized by problems in various aspects of numeracy as well as alterations of brain activation and brain structure. Moreover, DD is assumed to be a very heterogeneous disorder putting special challenges to define homogeneous diagnostic criteria. Finally, interdisciplinary perspectives from psychology, neuroscience and education can contribute to the design for interventions, and although results are still sparse, they are promising and have shown positive effects on behaviour as well as brain function.

Conclusion: In the current review, we are going to give an overview about typical and atypical development of numerical abilities at the behavioural and neuronal level. Furthermore, current status and obstacles in the definition and diagnostics of DD are discussed, and finally, relevant points that should be considered to make an intervention as successful as possible are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Vignette 1
Vignette 2
Vignette 3
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DD:

Developmental dyscalculia

fMRI:

Functional magnetic resonance imaging

IPS:

Intraparietal sulcus

MRI:

Magnetic resonance imaging

References

  1. Agrillo C, Piffer L, Bisazza A (2011) Number versus continuous quantity in numerosity judgments by fish. Cognition 119(2):281–287

    Article  PubMed  Google Scholar 

  2. Alarcon M, DeFries JC, Light JG, Pennington BF (1997) A twin study of mathematics disability. J Learn Disabil 30(6):617–623

    Article  CAS  PubMed  Google Scholar 

  3. APA (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Association, Washington

    Google Scholar 

  4. Arsalidou M, Taylor MJ (2011) Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage 54(3):2382–2393

    Article  PubMed  Google Scholar 

  5. Ashkenazi S, Rosenberg-Lee M, Metcalfe AW, Swigart AG, Menon V (2013) Visuo-spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia 51(11):2305–2317

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ashkenazi S, Rosenberg-Lee M, Tenison C, Menon V (2012) Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia. Dev Cogn Neurosci 2(Suppl 1):S152–S166

    Article  PubMed  Google Scholar 

  7. Aunio P, Niemivirta M (2010) Predicting children’s mathematical performance in grade one by early numeracy. J Lean Individ Differ 20:427–435

    Article  Google Scholar 

  8. Baron-Cohen S, Murphy L, Chakrabarti B, Craig I, Mallya U, Lakatošová S, Rehnstrom K, Peltonen L, Wheelwright S, Allison C, Fisher SE, Warrier V (2014) A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: a preliminary study. PLoS One 9(5):e96374

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bartelet D, Vaessen A, Blomert L, Ansari D (2014) What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? J Exp Child Psychol 117:12–28

    Article  PubMed  Google Scholar 

  10. Berl MM, Vaidya CJ, Gaillard WD (2006) Functional imaging of developmental and adaptive changes in neurocognition. NeuroImage 30(3):679–691

    Article  PubMed  Google Scholar 

  11. Berteletti I, Jrm P, Booth JR (2014) Children with mathematical learning disability fail in recruiting verbal and numerical brain regions when solving simple multiplication problems. Cortex 57:143–155

    Article  PubMed  Google Scholar 

  12. Booth JL, Siegler RS (2008) Numerical magnitude representations influence arithmetic learning. Child Dev 79(4):1016–1031

    Article  PubMed  Google Scholar 

  13. Brankaer C, Ghesquière P, De Smedt B (2014) Children’s mapping between Non-symbolic and symbolic numerical magnitudes and its association with timed and untimed tests of mathematics achievement. PLoS One 9(4):e93565

    Article  PubMed Central  PubMed  Google Scholar 

  14. Butterworth B, Varma S, Laurillard D (2011) Dyscalculia: from brain to education. Science (New York, NY) 332(6033):1049–1053

    Article  CAS  Google Scholar 

  15. Butterworth B, Walsh V (2011) Neural basis of mathematical cognition. Curr Biol 21(16):R618–R621

    Article  CAS  PubMed  Google Scholar 

  16. Cho S, Metcalfe AW, Young CB, Ryali S, Geary DC, Menon V (2012) Hippocampal-prefrontal engagement and dynamic causal interactions in the maturation of children’s fact retrieval. J Cogn Neurosci 24(9):1849–1866

    Article  PubMed Central  PubMed  Google Scholar 

  17. Cho S, Ryali S, Geary DC, Menon V (2011) How does a child solve 7+8? Decoding brain activity patterns associated with counting and retrieval strategies. Dev Sci 14(5):989–1001

    Article  PubMed Central  PubMed  Google Scholar 

  18. Christoff K, Gabrieli JDE (2000) The frontopolar cortex and human cognition: evidence for a rostocaudal hierachical organization within the human cortex. Psychobiology 28(2):168–186

    Google Scholar 

  19. Cohen Kadosh R, Dowker A, Heine A, Kaufmann L, Kucian K (2013) Interventions for improving numerical abilities: present and future. Trends Neurosci Educ 2:85–93

    Article  Google Scholar 

  20. de Hevia MD, Girelli L, Addabbo M, Macchi Cassia V (2014) Human Infants’ preference for left-to-right oriented increasing numerical sequences. PLoS One 9(5):e96412

    Article  PubMed Central  PubMed  Google Scholar 

  21. De Smedt B, Holloway ID, Ansari D (2011) Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. NeuroImage 57(3):771–781

    Article  PubMed  Google Scholar 

  22. Dehaene S (1992) Varieties of numerical abilities. Cognition 44:1–42

    Article  CAS  PubMed  Google Scholar 

  23. Dehaene S (2003) The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends Cogn Sci 7:145–147

    Article  PubMed  Google Scholar 

  24. Dehaene S, Bossini S, Giraux P (1993) The mental representation of parity and number magnitude. J Exp Psychol 122:371–396

    Article  Google Scholar 

  25. Dehaene S, Cohen JD (1995) Towards an anatomical and functional model of number processing. Math Cogn 1:83–120

    Google Scholar 

  26. Dehaene S, Cohen L (1997) Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex 33(2):219–250

    Article  CAS  PubMed  Google Scholar 

  27. Desoete A, Roeyers H, De Clercq A (2004) Children with mathematics learning disabilities in Belgium. J Learn Disabil 37(1):50–61

    Article  PubMed  Google Scholar 

  28. Dinkel PJ, Willmes K, Krinzinger H, Konrad K, Koten JW Jr (2013) Diagnosing developmental dyscalculia on the basis of reliable single case FMRI methods: promises and limitations. PLoS One 8(12):e83722

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ehlert A, Schroeders U, Fritz-Stratmann A (2012) Criticism of the discrepancy criterion in the diagnosis of dyslexia and dyscalculia. Lernen und Lernstörungen 1(3):169–184

    Article  Google Scholar 

  30. Feigenson L, Dehaene S, Spelke E (2004) Core systems of number. Trends Cogn Sci 8(7):307–314

    Article  PubMed  Google Scholar 

  31. Fias W, Menon V, Szucs D (2013) Multiple components of developmental dyscalculia. Trends Neurosci Educ 2:43–47

    Article  Google Scholar 

  32. Fischbach A, Schuchardt K, Brandenburg J, Klesczewski J, Balke-Melcher C, Schmidt C, Büttner G, Grube D, Mähler C, Hasselhorn M (2013) Prävalenz von Lernschwächen und Lernstörungen: Zur Bedeutung der Diagnosekriterien. Lernen und Lernstörungen 2(2):65–76

    Article  Google Scholar 

  33. Fischer MH (2012) A hierarchical view of grounded, embodied, and situated numerical cognition. Cogn Process 13(1):161–164

    Article  Google Scholar 

  34. Fischer MH, Brugger P (2011) When digits help digits: spatial-numerical associations point to finger counting as prime example of embodied cognition. Front Psychol 2:260

    Article  PubMed Central  PubMed  Google Scholar 

  35. Garland A, Low J, Burns K (2012) Large quantity discrimination by North Island robins (Petroica longipes). Animal Cognition:1–12

  36. Grond U, Schweiter M, von Aster M (2013) Neuropsychologie numerischer Repräsentationen. In: Von Aster M, Lorenz J (eds) Rechenstörungen bei Kindern - Neurowissenschaft, Psychologie, Pädagogik, vol 2. Vandenhoeck & Ruprecht, Göttingen

    Google Scholar 

  37. Gross J, Hudson C, Price D (2009) The long term costs of numeracy difficulties. Every Child a Chance Trust and KPMG, London

    Google Scholar 

  38. Gross HJ, Pahl M, Si A, Zhu H, Tautz J, Zhang S (2009) Number-based visual generalisation in the honeybee. PLoS One 4(1):e4263

    Article  PubMed Central  PubMed  Google Scholar 

  39. Halberda J, Mazzocco MM, Feigenson L (2008) Individual differences in non-verbal number acuity correlate with maths achievement. Nature 455(7213):665–668

    Article  CAS  PubMed  Google Scholar 

  40. Hauser MD, Carey S, Hauser LB (2000) Spontaneous number representation in semi-free-ranging rhesus monkeys. Proc Biol Sci 267(1445):829–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ise E, Dolle K, Pixner S, Schulte-Körne G (2012) Effektive Förderung rechenschwacher Kinder: Eine Metaanalyse. Kindheit und Entwicklung 21(3):181–192

    Article  Google Scholar 

  42. Ise E, Schulte-Körne G (2013) Symptomatik, Diagnostik und Behandlung der Rechenstörung. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie 41(4):271–282

    Article  PubMed  Google Scholar 

  43. Jansen BR, Hofman AD, Straatemeier M, van Bers BM, Raijmakers ME, van der Maas HL (2014) The role of pattern recognition in children’s exact enumeration of small numbers. Br J Dev Psychol 32(2):178–194

    Article  PubMed  Google Scholar 

  44. Karmiloff-Smith A (1998) Development itself is the key to understanding developmental disorders. Trends Cogn Sci 2(10):389–398

    Article  CAS  PubMed  Google Scholar 

  45. Käser T, Baschera G-M, Kohn J, Kucian K, Richtmann V, Grond U, Gross M, von Aster M (2013) Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition. Front Dev Psychol 4:1–13

    Google Scholar 

  46. Käser T, Busetto A, Baschera G-M, Kohn J, Kucian K, von Aster M, Gross M, Cerri S, Clancey W, Papadourakis G, Panourgia K (2012) Modelling and Optimizing the Process of Learning Mathematics. In: Intelligent Tutoring Systems, vol 7315. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp 389–398

  47. Käser T, Kucian K, Ringwald M, Baschera G-M, Von Aster M, Gross M (2011) Therapy software for enhancing numerical cognition. In: Özyurt J, Anschütz A, Bernholt S, Lenk J (eds) Interdisciplinary perspectives on cognition, education and the brain - Hanse-Studies, vol 7. BIS-Verlag, Oldenburg, pp 207–216

    Google Scholar 

  48. Kaufmann L, Koppelstaetter F, Delazer M, Siedentopf C, Rhomberg P, Golaszewski S, Felber S, Ischebeck A (2005) Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study. NeuroImage 25(3):888–898

    Article  PubMed  Google Scholar 

  49. Kaufmann L, Kucian K, von Aster M (2014) Development of the numerical brain. In: Dowker A, Cohen Kadosh R (eds) Oxford handbook of numerical cognition. Oxford University Press, Oxford

    Google Scholar 

  50. Kaufmann L, Mazzocco M, Dowker A, von Aster M, Göbel SM, Grabner RH, Henik A, Jordan NC, Karmiloff-Smith A, Kucian K, Noel M, Rubinsten O, Szucs D, Shalev R, Nuerk H (2013) Dyscalculia from a developmental and differential perspective Frontiers in Developmental Psychology 4: 516

  51. Kaufmann L, Vogel S, Starke M, Kremser C, Schocke M, Wood G (2009) Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes. Behav Brain Funct 5(1):35

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kaufmann L, von Aster M (2012) The diagnosis and management of dyscalculia. Dtsch Arztebl Int 109(45):767–778

  53. Kaufmann L, Wood G, Rubinsten O, Henik A (2011) Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Dev Neuropsychol 36(6):763–787

    Article  PubMed  Google Scholar 

  54. Kohn J, Wyschkon A, Ballaschk K, Ihle W, Esser G (2013) Verlauf von umschriebenen entwicklungsstörungen: eine 30-monats-follow-up-studie. Lernen und Lernstörungen 2(2):77–89

    Article  Google Scholar 

  55. Krajcsi A, Szabo E, Morocz IA (2013) Subitizing is sensitive to the arrangement of objects. Exp Psychol 60(4):227–234

    Article  PubMed  Google Scholar 

  56. Krusche P, Uller C, Dicke U (2010) Quantity discrimination in salamanders. J Exp Biol 213(11):1822–1828. doi:10.1242/jeb.039297

    Article  PubMed  Google Scholar 

  57. Kucian K, Ashkenazi SS, Hanggi J, Rotzer S, Jancke L, Martin E, von Aster M (2013) Developmental dyscalculia: a dysconnection syndrome? Brain Struct Funct 219(5):1721–1733

    PubMed  Google Scholar 

  58. Kucian K, Grond U, Rotzer S, Henzi B, Schonmann C, Plangger F, Galli M, Martin E, von Aster M (2011) Mental number line training in children with developmental dyscalculia. NeuroImage 57(3):782–795

    Article  CAS  PubMed  Google Scholar 

  59. Kucian K, Kaufmann L (2009) A developmental model of number representation. Behav Brain Sci 32(3/4):340–341

    Article  Google Scholar 

  60. Kucian K, Kaufmann L, von Aster M (2014) Brain correlates of numerical disabilities. In: Cohen MS, Dowker A (eds) Oxford handbook of numerical cognition. Oxford University Press, Oxford

    Google Scholar 

  61. Kucian K, Loenneker T, Dietrich T, Dosch M, Martin E, von Aster M (2006) Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study. Behav Brain Funct 2:31

    Article  PubMed Central  PubMed  Google Scholar 

  62. Kucian K, Loenneker T, Martin E, von Aster M (2011) Non-symbolic numerical distance effect in children with and without developmental dyscalculia: a parametric FMRI study. Dev Neuropsychol 36(6):741–762

    Article  PubMed  Google Scholar 

  63. Kucian K, von Aster M, Loenneker T, Dietrich T, Martin E (2008) Development of neural networks for exact and approximate calculation: a FMRI study. Dev Neuropsychol 33(4):447–473

    Article  PubMed  Google Scholar 

  64. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546

    Article  PubMed  Google Scholar 

  65. McCloskey M, Caramazza A, Basili A (1985) Cognitive mechanisms in number processing and calculation: evidence from dyscalculia. Brain Cogn 4(2):171–196

    Article  CAS  PubMed  Google Scholar 

  66. Moeller K, Fischer U, Link T, Wasner M, Huber S, Cress U, Nuerk HC (2012) Learning and development of embodied numerosity. Cogn Process 13(Suppl 1):S271–S274

    Article  PubMed  Google Scholar 

  67. Moser Opitz E (2007) Rechenschwäche/Dyskalkulie. Theoretische Klärungen und empirische Studien an betroffenen Schülerinnen und Schülern. Haupt, Bern

    Google Scholar 

  68. Mussolin C, De Volder A, Grandin C, Schlogel X, Nassogne MC, Noel MP (2010) Neural correlates of symbolic number comparison in developmental dyscalculia. J Cogn Neurosci 22(5):860–874

    Article  PubMed  Google Scholar 

  69. Nieder A (2012) Supramodal numerosity selectivity of neurons in primate prefrontal and posterior parietal cortices. Proc Natl Acad Sci U S A 109(29):11860–11865. doi:10.1073/pnas.1204580109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Notebaert K, Nelis S, Reynvoet B (2011) The magnitude representation of small and large symbolic numbers in the left and right hemisphere: an event-related fMRI study. J Cogn Neurosci 23(3):622–630

    Article  PubMed  Google Scholar 

  71. Organization WH (2010) ICD-10. International Statistical Classification of Diseases and Related Health Problems 10th Revision; Chapter V: Mental and behavioral disorders (F81.2), vol 2. World Health Organization, Geneva

  72. Parsons S, Bynner J (2005) Does numeracy matter more? National research and development centre for adult literacy and numeracy. Institute of Education, London

    Google Scholar 

  73. Pica P, Lemer C, Izard V, Dehaene S (2004) Exact and approximate arithmetic in an Amazonian indigene group. Science (New York, NY) 306(5695):499–503

    Article  CAS  Google Scholar 

  74. Pina V, Fuentes LJ, Castillo A, Diamantopoulou S (2014) Disentangling the effects of working memory, language, parental education and Non-verbal intelligence on children’s mathematical abilities. J Front Psychol 5:415

    Google Scholar 

  75. Price GR, Holloway I, Räsänen P, Vesterinen M, Ansari D (2007) Impaired parietal magnitude processing in developmental dyscalculia. Curr Biol 17(24):R1042–R1043

    Article  CAS  PubMed  Google Scholar 

  76. Reigosa-Crespo V, Valdes-Sosa M, Butterworth B, Estevez N, Rodriguez M, Santos E, Torres P, Suarez R, Lage A (2012) Basic numerical capacities and prevalence of developmental dyscalculia: the Havana survey. Dev Psychol 48(1):123–135

    Article  PubMed  Google Scholar 

  77. Rotzer S, Kucian K, Martin E, von Aster M, Klaver P, Loenneker T (2008) Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage 39(1):417–422

    Article  CAS  PubMed  Google Scholar 

  78. Rotzer S, Loenneker T, Kucian K, Martin E, Klaver P, von Aster M (2009) Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia 47(13):2859–2865

    Article  CAS  PubMed  Google Scholar 

  79. Rousselle L, Noël MP (2007) Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs non-symbolic number magnitude processing. Cognition 102(3):361–395

    Article  PubMed  Google Scholar 

  80. Rubinsten O, Henik A (2009) Developmental dyscalculia: heterogeneity might not mean different mechanisms. Trends Cogn Sci 13(2):92–99

    Article  PubMed  Google Scholar 

  81. Rugani R, Fontanari L, Simoni E, Regolin L, Vallortigara G (2009) Arithmetic in newborn chicks. Proc R Soc B Biol Sci 276(1666):2451–2460. doi:10.1098/rspb.2009.0044

    Article  Google Scholar 

  82. Rugani R, Kelly DM, Szelest I, Regolin L, Vallortigara G (2013) Is it only humans that count from left to right? Biol Lett 6(3):290–292

    Article  Google Scholar 

  83. Rykhlevskaia E, Uddin LQ, Kondos L, Menon V (2009) Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Front Hum Neurosci 3:51

    Article  PubMed Central  PubMed  Google Scholar 

  84. Schleger F, Landerl K, Muenssinger J, Draganova R, Reinl M, Kiefer-Schmidt I, Weiss M, Wacker-Gussmann A, Huotilainen M, Preissl H (2014) Magnetoencephalographic signatures of numerosity discrimination in fetuses and neonates. Dev Neuropsychol 39(4):316–329

    Article  PubMed  Google Scholar 

  85. Shaki S, Fischer MH (2012) Multiple spatial mappings in numerical cognition. J Exp Psychol Hum Percept Perform 38(3):804–809

    Article  PubMed  Google Scholar 

  86. Shaki S, Fischer MH, Petrusic WM (2009) Reading habits for both words and numbers contribute to the SNARC effect. Psychon Bull Rev 16(2):328–331

    Article  PubMed  Google Scholar 

  87. Shalev RS, Manor O, Kerem B, Ayali M, Badichi N, Friedlander Y, Gross-Tsur V (2001) Developmental dyscalculia is a familial learning disability. J Learn Disabil 34(1):59–65

    Article  CAS  PubMed  Google Scholar 

  88. Shalev RS, Manor O, Gross-Tsur V (2005) Developmental dyscalculia: a prospective 6-year follow-up. Dev Med Child Neurol 47(2):121–125

    Article  PubMed  Google Scholar 

  89. Shalev RS, von Aster M (2008) Identification, classification, and prevalence of developmental dyscalculia. Encyclopedia of Language and Literacy Development: 1–9

  90. Siegler RS, Booth JL (2004) Development of numerical estimation in young children. Child Dev 75(2):428–444

    Article  PubMed  Google Scholar 

  91. Siegler RS, Opfer JE (2003) The development of numerical estimation: evidence for multiple representations of numerical quantity. Psychol Sci 14(3):237–243

    Article  PubMed  Google Scholar 

  92. Siegler RS, Robinson M (1982) The development of numerical understanding. Adv Child Dev Behav 16:241–312

    Article  CAS  PubMed  Google Scholar 

  93. Soltesz F, Szucs D, Dekany J, Markus A, Csepe V (2007) A combined event-related potential and neuropsychological investigation of developmental dyscalculia. Neurosci Lett 417(2):181–186

    Article  CAS  PubMed  Google Scholar 

  94. Starkey P, Cooper RG Jr (1980) Perception of numbers by human infants. Science (New York, NY) 210(4473):1033–1035

    Article  CAS  Google Scholar 

  95. Stock P, Desoete A, Roeyers H (2010) Detecting children with arithmetic disabilities from kindergarten: evidence from a 3-year longitudinal study on the role of preparatory arithmetic abilities. J Learn Disabil 43(3):250–268. doi:10.1177/0022219409345011

    Article  PubMed  Google Scholar 

  96. Szucs D, Devine A, Soltesz F, Nobes A, Gabriel F (2013) Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex 49:2674–2688

    Article  PubMed Central  PubMed  Google Scholar 

  97. Tosto M, Petrill S, Halberda J, Trzaskowski M, Tikhomirova T, Bogdanova O, Ly R, Wilmer J, Naiman D, Germine L, Plomin R, Kovas Y (2014) Why do we differ in number sense? Evidence from a genetically sensitive investigation. Intelligence 43(100):35–46

    Article  PubMed Central  PubMed  Google Scholar 

  98. Tsang JM, Dougherty RF, Deutsch GK, Wandell BA, Ben-Shachar M (2009) Frontoparietal white matter diffusion properties predict mental arithmetic skills in children. Proc Natl Acad Sci U S A 106(52):22546–22551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. van Eimeren L, Niogi SN, McCandliss BD, Holloway ID, Ansari D (2008) White matter microstructures underlying mathematical abilities in children. Neuroreport 19(11):1117–1121

    Article  PubMed  Google Scholar 

  100. Verdine BN, Irwin CM, Golinkoff RM, Hirsh-Pasek K (2014) Contributions of executive function and spatial skills to preschool mathematics achievement. J Exp Child Psychol 126:37–51

    Article  PubMed  Google Scholar 

  101. von Aster M, Käser T, Kucian K, Gross M (2012) Calcularis - Rechenschwäche mit dem Computer begegnen. Schweizerische Zeitschrift für Heilpädagogik 6:32–36

    Google Scholar 

  102. von Aster M, Shalev R (2007) Number development and developmental dyscalculia. Dev Med Child Neurol 49:868–873

    Article  Google Scholar 

  103. von Aster M, Weinhold Zulauf M, Horn R (2006) ZAREKI-R (neuropsychological test battery for number processing and calculation in children), revidierte version. Harcourt Test Services, Frankfurt

    Google Scholar 

  104. Wheeler-Kingshott CA, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61(5):1255–1260

    Article  PubMed  Google Scholar 

  105. Zamarian L, Ischebeck A, Delazer M (2009) Neuroscience of learning arithmetic - evidence from brain imaging studies. Neurosci Biobehav Rev 33:909–925

    Article  CAS  PubMed  Google Scholar 

  106. Zebian S (2005) Linkages between number concepts, spatial thinking, and directionality of writig: the SNARC effect and the reverse SNARC effect in english and Arabic monoliterates, biliterates and illiterate Arabic speakers. J Cogn Cult 5(1–2):165–190

    Article  Google Scholar 

Download references

Conflict of interest

We, Karin Kucian and Michael von Aster, certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Kucian.

Additional information

Communicated by: Peter de Winter.

Revisions received: 29 October 2014/5 November 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucian, K., von Aster, M. Developmental dyscalculia. Eur J Pediatr 174, 1–13 (2015). https://doi.org/10.1007/s00431-014-2455-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-014-2455-7

Keywords

Navigation