Skip to main content
Log in

Sequencing of the DKK1 gene in patients with anorectal malformations and hypospadias

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Anorectal malformations (ARM) are rare congenital malformations of the gastrointestinal tract. Approximately 60 % of the patients have additional congenital malformations, such as hypospadias. A recently published article showed that deletion of one single gene, dickkopf WNT signaling pathway inhibitor-1 (Dkk1), resulted in an imperforate anus with rectourinary fistula and preputial hypospadias in mice. To determine whether DKK1 also plays a role in the etiology of ARM and hypospadias in humans, we sequenced the four exons of the DKK1 gene in 17 patients affected with both ARM and hypospadias. No new potential disease-causing variant was identified. However, we detected a known non-synonymous variant in one patient, which was predicted in silico to be damaging, and the corresponding unaffected amino acid is highly conserved.

Conclusion: In this human study, a potential interesting non-synonymous variant was found in the DKK1 gene. Whether this variant plays a contributory role in the genesis of ARM or hypospadias would require a much larger study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARM:

Anorectal malformations

PCR:

Polymerase chain reaction

UTR:

Untranslated region

References

  1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. doi:10.1038/nmeth0410-248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Beleza-Meireles A, Lundberg F, Lagerstedt K, Zhou X, Omrani D, Frisen L, Nordenskjold A (2007) FGFR2, FGF8, FGF10 and BMP7 as candidate genes for hypospadias. Eur J Hum Genet 15:405–410

    Article  CAS  PubMed  Google Scholar 

  3. Bell J (2008) A simple way to treat PCR products prior to sequencing using ExoSAP-IT. Biotechniques 44:834. doi:10.2144/000112890

    Article  CAS  PubMed  Google Scholar 

  4. Boomsma DI, Wijmenga C, Slagboom EP, Swertz MA, Karssen LC, Abdellaoui A, Ye K, Guryev V, Vermaat M, van Dijk F, Francioli LC, Hottenga JJ, Laros JF, Li Q, Li Y, Cao H, Chen R, Du Y, Li N, Cao S, van Setten J, Menelaou A, Pulit SL, Hehir-Kwa JY, Beekman M, Elbers CC, Byelas H, de Craen AJ, Deelen P, Dijkstra M, den Dunnen JT, de Knijff P, Houwing-Duistermaat J, Koval V, Estrada K, Hofman A, Kanterakis A, Dv E, Mai H, Kattenberg M, van Leeuwen EM, Neerincx PB, Oostra B, Rivadeneira F, Suchiman EH, Uitterlinden AG, Willemsen G, Wolffenbuttel BH, Wang J, de Bakker PI, van Ommen GJ, van Duijn CM (2014) The Genome of the Netherlands: design, and project goals. Eur J Hum Genet 22:221–227. doi:10.1038/ejhg.2013.118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R (2009) Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat 30:1237–1244. doi:10.1002/humu.21047

    Article  CAS  PubMed  Google Scholar 

  6. Chen T, Li Q, Xu J, Ding K, Wang Y, Wang W, Li S, Shen Y (2007) Mutation screening of BMP4, BMP7, HOXA4 and HOXB6 genes in Chinese patients with hypospadias. Eur J Hum Genet 15:23–28

    Article  PubMed  Google Scholar 

  7. Cuschieri A, Group EW (2002) Anorectal anomalies associated with or as part of other anomalies. Am J Med Genet 110:122–130

    Article  PubMed  Google Scholar 

  8. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864

    Article  CAS  PubMed  Google Scholar 

  9. Guo C, Sun Y, Guo C, MacDonald BT, Borer JG, Li X (2014) Dkk1 in the peri-cloaca mesenchyme regulates formation of anorectal and genitourinary tracts. Dev Biol 385:41–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hagan DM, Ross AJ, Strachan T, Lynch SA, Ruiz-Perez V, Wang YM, Scambler P, Custard E, Reardon W, Hassan S, Nixon P, Papapetrou C, Winter RM, Edwards Y, Morrison K, Barrow M, Cordier-Alex MP, Correia P, Galvin-Parton PA, Gaskill S, Gaskin KJ, Garcia-Minaur S, Gereige R, Hayward R, Homfray T (2000) Mutation analysis and embryonic expression of the HLXB9 Currarino syndrome gene. Am J Hum Genet 66:1504–1515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Holschneider A, Hutson J, Peña A, Beket E, Chatterjee S, Coran A, Davies M, Georgeson K, Grosfeld J, Gupta D, Iwai N, Kluth D, Martucciello G, Moore S, Rintala R, Smith ED, Sripathi DV, Stephens D, Sen S, Ure B, Grasshoff S, Boemers T, Murphy F, Söylet Y, Dübbers M, Kunst M (2005) Preliminary report on the International Conference for the Development of Standards for the Treatment of Anorectal Malformations. J Pediatr Surg 40:1521–1526

    Article  PubMed  Google Scholar 

  12. International Clearinghouse (2012) Annual report 2012—International clearinghouse for birth defects surveillance and research. Available at: http://www.icbdsr.org/filebank/documents/ar2005/Report2012.pdf. Accesssed May 25, 2013.

  13. Kang S, Graham JM Jr, Olney AH, Biesecker LG (1997) GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet 15:266–268

    Article  CAS  PubMed  Google Scholar 

  14. Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18:81–83

    Article  CAS  PubMed  Google Scholar 

  15. Kurahashi N, Murakumo M, Kakizaki H, Nonomura K, Koyanagi T, Kasai S, Sata F, Kishi R (2004) The estimated prevalence of hypospadias in Hokkaido, Japan. J Epidemiol 14:73–77

    Article  PubMed  Google Scholar 

  16. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P (2009) Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25:2744–2750. doi:10.1093/bioinformatics/btp528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lin C, Yin Y, Veith GM, Fisher AV, Long F, Ma L (2009) Temporal and spatial dissection of Shh signaling in genital tubercle development. Development 136:3959–3967. doi:10.1242/dev.039768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Misra D, Mushtaq I, Drake DP, Kiely EM, Spitz L (1996) Associated urologic anomalies in low imperforate anus are capable of causing significant morbidity: a 15-year experience. Urology 48:281–283

    Article  CAS  PubMed  Google Scholar 

  19. Miyagawa S, Moon A, Haraguchi R, Inoue C, Harada M, Nakahara C, Suzuki K, Matsumaru D, Kaneko T, Matsuo I, Yang L, Taketo MM, Iguchi T, Evans SM, Yamada G (2009) Dosage-dependent hedgehog signals integrated with Wnt/beta-catenin signaling regulate external genitalia formation as an appendicular program. Development 136:3969–3978. doi:10.1242/dev.039438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Narumi Y, Kosho T, Tsuruta G, Shiohara M, Shimazaki E, Mori T, Shimizu A, Igawa Y, Nishizawa S, Takagi K, Kawamura R, Wakui K, Fukushima Y (2010) Genital abnormalities in Pallister-Hall syndrome: report of two patients and review of the literature. Am J Med Genet A 152A:3143–3147. doi:10.1002/ajmg.a.33720

    Article  PubMed  Google Scholar 

  21. Nassar N, Bower C, Barker A (2007) Increasing prevalence of hypospadias in Western Australia, 1980–2000. Arch Dis Child 92:580–584

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ross AJ, Ruiz-Perez V, Wang Y, Hagan DM, Scherer S, Lynch SA, Lindsay S, Custard E, Belloni E, Wilson DI, Wadey R, Goodman F, Orstavik KH, Monclair T, Robson S, Reardon W, Burn J, Scambler P, Strachan T (1998) A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nat Genet 20:358–361

    Article  CAS  PubMed  Google Scholar 

  23. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7:575–576. doi:10.1038/nmeth0810-575

    Article  CAS  PubMed  Google Scholar 

  24. Sudo Y, Numakura C, Abe A, Aiba S, Matsunaga A, Hayasaka K (2010) Phenotypic variability in a family with Townes-Brocks syndrome. J Hum Genet 55:550–551. doi:10.1038/jhg.2010.64

    Article  PubMed  Google Scholar 

  25. Wong EH, Cui L, Ng CL, Tang CS, Liu XL, So MT, Yip BH, Cheng G, Zhang R, Tang WK, Yang W, Lau YL, Baum L, Kwan P, Sun LD, Zuo XB, Ren YQ, Yin XY, Miao XP, Liu J, Lui VC, Ngan ES, Yuan ZW, Zhang SW, Xia J, Wang H, Sun XB, Wang R, Chang T, Chan IH, Chung PH, Zhang XJ, Wong KK, Cherny SS, Sham PC, Tam PK, Garcia-Barcelo MM (2013) Genome-wide copy number variation study in anorectal malformations. Hum Mol Genet 22:621–631. doi:10.1093/hmg/dds451

    Article  CAS  PubMed  Google Scholar 

  26. Yucel S, Dravis C, Garcia N, Henkemeyer M, Baker LA (2007) Hypospadias and anorectal malformations mediated by Eph/ephrin signaling. J Pediatr Urol 3:354–363

    Article  PubMed Central  PubMed  Google Scholar 

  27. Zhang J, Zhang ZB, Gao H, Zhang D, Wang WL (2009) Down-regulation of SHH/BMP4 signalling in human anorectal malformations. J Int Med Res 37:1842–1850

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the surgical and other staff members of the Departments of Surgery-Pediatric surgery and Urology-Pediatric urology, Radboudumc Amalia Children’s Hospital of the Radboud university medical center in Nijmegen, the Department of Pediatric Surgery of the Sophia Children’s Hospital, and the Department of Clinical Genetics of the Erasmus Medical Centre in Rotterdam for their collaboration in collecting data from patients. We also thank the staff members of the Department of Human Genetics from the Radboud university medical center in Nijmegen for their guidance and assistance with Sanger sequencing. Finally, we are grateful to the patients who participated in this study. This study was funded by the Radboud university medical center, Nijmegen, The Netherlands.

Conflict of interest

The authors have no conflict of interest to disclose.

Ethical standards

The AGORA study protocol was approved by the Regional Committee on Research Involving Human Subjects Arnhem-Nijmegen, and written informed consent was obtained from all participants and/or their parents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loes F. M. van der Zanden.

Additional information

Communicated by Beat Steinmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van de Putte, R., Wijers, C.H.W., de Blaauw, I. et al. Sequencing of the DKK1 gene in patients with anorectal malformations and hypospadias. Eur J Pediatr 174, 583–587 (2015). https://doi.org/10.1007/s00431-014-2436-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-014-2436-x

Keywords

Navigation