Skip to main content

Infrared thermography is useful for ruling out fractures in paediatric emergencies


Musculoskeletal injuries are a leading cause of paediatric injuries and emergency department visits in Western countries. Diagnosis usually involves radiography, but this exposes children without fractures to unnecessary ionising radiation. We explored whether infrared thermography could provide a viable alternative in trauma cases. We compared radiography and thermal images of 133 children who had been diagnosed with a trauma injury in the emergency unit of a Spanish hospital. As well as the thermal variables in the literature, we introduced a new quantifier variable, the size of the lesion. Decision tree models were built to assess the technique’s accuracy in diagnosing whether a bone had been fractured or not. Infrared thermography had a sensitivity of 0.91, a specificity of 0.88 and a negative predictive value of 0.95. The new lesion size variable introduced appeared to be of main importance to the discriminatory power of the method.

Conclusion: The high negative predictive value of infrared thermography suggests that it is a promising method for ruling out fractures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3



Differences of maximum temperatures


Differences of average temperatures


Differences of areas


Area under the curve


Classification and regression trees


Diagnostic odds ratio


Confidence interval


Negative likelihood ratio


Negative predictive value


Positive likelihood ratio


Positive predictive value


Region of interest


Standard deviation






  1. 1.

    Ammer K (2008) Standard procedures for recording and evaluation of thermal images of the human body: the Glamorgan protocol. Thermology Int 18:125–144

    Google Scholar 

  2. 2.

    Ammer K, Ring FE (2007) Standard procedures for infrared imaging in medicine. In: Diakides NA, Bronzino JD (eds) Medical infrared imaging. Taylor & Francis, Boca Raton, pp pp 22.1–22.14. doi:10.5306/wjco.v2.i4.171

    Google Scholar 

  3. 3.

    Arthur DT, Khan MM, Barclay LC (2011) Thermographic investigation of osseous stress pathology. Conf Proc IEEE Eng Med Biol Soc 2011:6250–6253. doi:10.1109/IEMBS.2011.6091543

    PubMed  Google Scholar 

  4. 4.

    Awerbuch MS (1991) Thermography—its current diagnostic status in musculoskeletal medicine. Med J Aust 154:441–444

    CAS  PubMed  Google Scholar 

  5. 5.

    Breiman L, Friedman JH, Olshen RA et al (1984) Classification and regression trees. Wadsworth, Monterey

    Google Scholar 

  6. 6.

    Collard DC, Verhagen EA, van Mechelen W et al (2011) Economic burden of physical activity-related injuries in Dutch children aged. Br J Sports Med 45:1058–1063. doi:10.1136/bjsm.2010.082545

    Article  PubMed  Google Scholar 

  7. 7.

    Di Benedetto M, Huston CW, Sharp MW et al (1996) Regional hypothermia in response to minor injury. Am J Phys Med Rehabil 75:270–277

    Article  PubMed  Google Scholar 

  8. 8.

    Getson P, Schwartz RG, Hoekstra PP et al (2013) Guidelines for breast thermography [Internet]. American Academy of Thermology, Greenville

    Google Scholar 

  9. 9.

    Hassan M, Chernomordik V, Vogel A et al (2007) Infrared imaging for functional monitoring of disease processes. In: Diakides NA, Bronzino JD (eds) Medical infrared imaging. Taylor & Francis, Boca Raton, pp pp 14.1–14.28

    Google Scholar 

  10. 10.

    Head JF, Elliott RL (2002) Infrared imaging: making progress in fulfilling its medical promise. IEEE Eng Med Biol Mag 21:80–85. doi:10.1109/MEMB.2002.1175142

    Article  PubMed  Google Scholar 

  11. 11.

    Howell KJ, Smith RE (2009) Guidelines for specifying and testing a thermal camera for medical applications. Thermology Int 19(1):5–14

    Google Scholar 

  12. 12.

    Jover Gonzálbez A (2010) Protocolo de utilización de una cámara termográfica: Aplicación al estudio de la práctica deportiva [Protocol of use of a thermal imaging camera, Application to the study of sports practice] [master’s thesis]. Universidad de Valencia, Valencia (Spain)

    Google Scholar 

  13. 13.

    Mettler FA, Bhargavan M, Faulkner K et al (2009) Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources-1950-2007. Radiology 253:520–531. doi:10.1148/radiol.2532082010

    Article  PubMed  Google Scholar 

  14. 14.

    Morillo López M (2012) Control de calidad de cámaras termográficas. Aplicación al diagnóstico no invasivo de patologías pediátricas [Quality control of thermal imaging cameras. Application to non-invasive diagnosis of pediatric diseases] [master’s thesis]. Valencia (Spain): Universidad de Valencia

  15. 15.

    Pascoe DD, Mercer JB, de Weerd L (2007) Physiology of thermal signals. In: Diakides NA, Bronzino JD (eds) Medical infrared imaging. Taylor & Francis, Boca Raton, pp pp. 6.1–6.20. doi:10.1201/9781420003864.ch21

    Google Scholar 

  16. 16.

    Ring EFJ, Ammer K (2000) The technique of infrared imaging in medicine. Thermology Int 10:7–14. doi:10.1080/03091900600711332

    Google Scholar 

  17. 17.

    Robin X, Turck N, Hainard A et al (2011) pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinforma 12:77. doi:10.1186/1471-2105-12-77

    Article  Google Scholar 

  18. 18.

    Sanchis-Sánchez E, Vergara-Hernández C, Cibrián RM et al (2014) Infrared thermal imaging in the diagnosis of musculoskeletal injuries: a systematic review and meta-analysis. AJR Am J Roentgenol. Forthcoming

  19. 19.

    Saxena AK, Willital GH (2008) Infrared thermography: experience from a decade of pediatric imaging. Eur J Pediatr 167:757–764. doi:10.1007/s00431-007-0583-z

    Article  PubMed  Google Scholar 

  20. 20.

    Schulze-Rath R, Hammer GP, Blettner M (2008) Are pre- or postnatal diagnostic X-rays a risk factor for childhood cancer? A systematic review. Radiat Environ Biophys 47:301–312. doi:10.1007/s00411-008-0171-2

    Article  PubMed  Google Scholar 

  21. 21.

    Schwartz RG, O’Young B, Getson P et al (2012) Guidelines for neuromusculoskeletal infrared thermography sympathetic skin response (SSR) studies. American Academy of Thermology, Greenville

    Google Scholar 

  22. 22.

    Silva CT, Naveed N, Bokhari S et al (2012) Early assessment of the efficacy of digital infrared thermal imaging in pediatric extremity trauma. Emerg Radiol 19:203–209. doi:10.1007/s10140-012-1027-2

    Article  PubMed  Google Scholar 

  23. 23.

    Symonds ME, Henderson K, Elvidge L et al (2012) Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J Pediatr 161:892–898. doi:10.1016/j.jpeds.2012.04.056

    Article  PubMed  Google Scholar 

  24. 24.

    Vardasca R, Ring EFJ, Plassmann P, Jones CD (2012) Thermal symmetry of the upper and lower extremities in healthy subjects. Thermology Int 22(2):53–60

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Rosario Salvador-Palmer.

Additional information

Communicated by Jaan Toelen

Electronic supplementary material

Below is the link to the electronic supplementary material.


High Resolution Image (GIF 244 kb)


(TIFF 3201 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanchis-Sánchez, E., Salvador-Palmer, R., Codoñer-Franch, P. et al. Infrared thermography is useful for ruling out fractures in paediatric emergencies. Eur J Pediatr 174, 493–499 (2015).

Download citation


  • Fractures
  • Infrared thermography
  • Ionising radiation
  • Musculoskeletal injuries
  • Paediatric injuries