Skip to main content
Log in

Total antioxidant capacity and oxidative stress after a 10-week dietary intervention program in obese children

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Dietary and serum total antioxidant capacity (TAC) are considered appropriate tools for investigating the potential health effects of dietary antioxidants consumed in mixed diets. The aim was to analyze the impact of a dietary intervention on macronutrient intakes and to evaluate the improvement on oxidative status after weight loss (WL) by measuring dietary and serum TAC, and urinary F2-isoprostane levels as markers of oxidative stress. Forty-four overweight/obese children (mean age 11.5 years) were enrolled to undergo a 10-week WL program. They were dichotomized at the median of body mass index–standard deviation score (BMI-SDS) change, as high (HR) and low responders (LR) after intervention. Subjects were prescribed with a fixed full-day meal diet, calculated according to their basal metabolic rate and physical activity levels. A validated food-frequency questionnaire was used to retrospectively calculate TAC and daily nutrient intake. The HR subjects were able to reduce anthropometric indices and to improve lipid and glucose profile. They also significantly diminished fat intake (p = 0.013). Moreover, baseline serum TAC values did significantly predict the reduction in urinary F2 isoprostane (B = −0.236 (−0.393 to −0.078); p = 0.014) in the HR group after the WL program. Notably, changes in dietary TAC after the treatment were associated with a decrease in body weight after the 10-week intervention (B = −2.815 (−5.313 to −0.318), p = 0.029) in the HR group. The -ΔSerumTAC/ΔDietaryTAC and the -ΔF2Isoprostane/ΔDietaryTAC ratios revealed that the relationships between oxidative markers and antioxidants dietary intake were more favorable in the HR than in the LR group. Conclusion: Our study showed that a 10-week WL program was able to reduce adiposity indices in obese children. Moreover, after the intervention changes in dietary TAC and WL were significantly associated. Our result suggests that specific food with a high TAC content (such as fruits, vegetables, and legumes) could be recommended to improve WL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agudo A, Cabrera L, Amiano P, Ardanaz E, Barricarte A, Berenguer T, Chirlaque MD, Dorronsoro M, Jakszyn P, Larranaga N, Martinez C, Navarro C, Quiros JR, Sanchez MJ, Tormo MJ, Gonzalez CA (2007) Fruit and vegetable intakes, dietary antioxidant nutrients, and total mortality in Spanish adults: findings from the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). Am J Clin Nutr 85(6):1634–1642

    CAS  PubMed  Google Scholar 

  2. Bahadoran Z, Golzarand M, Mirmiran P, Shiva N, Azizi F (2012) Dietary total antioxidant capacity and the occurrence of metabolic syndrome and its components after a 3-year follow-up in adults: Tehran Lipid and Glucose Study. Nutr Metab (Lond) 9(1):70. doi:10.1186/1743-7075-9-70

    Article  CAS  Google Scholar 

  3. Brighenti F, Valtuena S, Pellegrini N, Ardigo D, Del Rio D, Salvatore S, Piatti P, Serafini M, Zavaroni I (2005) Total antioxidant capacity of the diet is inversely and independently related to plasma concentration of high-sensitivity C-reactive protein in adult Italian subjects. Br J Nutr 93(5):619–625

    Article  CAS  PubMed  Google Scholar 

  4. Codoner-Franch P, Boix-Garcia L, Simo-Jorda R, Del Castillo-Villaescusa C, Maset-Maldonado J, Valls-Belles V (2010) Is obesity associated with oxidative stress in children? Int J Pediatr Obes 5(1):56–63. doi:10.3109/17477160903055945

    Article  PubMed  Google Scholar 

  5. Codoner-Franch P, Lopez-Jaen AB, De La Mano-Hernandez A, Sentandreu E, Simo-Jorda R, Valls-Belles V (2010) Oxidative markers in children with severe obesity following low-calorie diets supplemented with mandarin juice. Acta Paediatr 99(12):1841–1846. doi:10.1111/j.1651-2227.2010.01903.x

    Article  CAS  PubMed  Google Scholar 

  6. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320(7244):1240–1243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Coppen AM, Risser JA, Vash PD (2008) Metabolic syndrome resolution in children and adolescents after 10 weeks of weight loss. J Cardiometab Syndr 3(4):205–210. doi:10.1111/j.1559-4572.2008.00016.x

    Article  PubMed  Google Scholar 

  8. Cracowski JL, Durand T, Bessard G (2002) Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology, and clinical implications. Trends Pharmacol Sci 23(8):360–366

    Article  CAS  PubMed  Google Scholar 

  9. Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity, and diabetes. Trends Immunol 25(1):4–7

    Article  CAS  PubMed  Google Scholar 

  10. Desideri G, De Simone M, Iughetti L, Rosato T, Iezzi ML, Marinucci MC, Cofini V, Croce G, Passacquale G, Necozione S, Ferri C (2005) Early activation of vascular endothelial cells and platelets in obese children. J Clin Endocrinol Metab 90(6):3145–3152. doi:10.1210/jc.2004-1741

    Article  CAS  PubMed  Google Scholar 

  11. Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation—a review. Curr Med Chem 10(17):1723–1740

    Article  CAS  PubMed  Google Scholar 

  12. Ford AL, Hunt LP, Cooper A, Shield JP (2010) What reduction in BMI SDS is required in obese adolescents to improve body composition and cardiometabolic health? Arch Dis Child 95(4):256–261. doi:10.1136/adc.2009.165340

    Article  PubMed  Google Scholar 

  13. Fulop T, Tessier D, Carpentier A (2006) The metabolic syndrome. Pathol Biol (Paris) 54(7):375–386. doi:10.1016/j.patbio.2006.07.002

    Article  CAS  Google Scholar 

  14. Gao Z, Novick M, Muller MD, Williams RJ, Spilk S, Leuenberger UA, Sinoway LI (2012) Exercise and diet-induced weight loss attenuates oxidative stress related-coronary vasoconstriction in obese adolescents. Eur J Appl Physiol. doi:10.1007/s00421-012-2459-9

    Google Scholar 

  15. Gharib N, Rasheed P (2011) Energy and macronutrient intake and dietary pattern among school children in Bahrain: a cross-sectional study. Nutr J 10:62. doi:10.1186/1475-2891-10-62

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gopaul NK, Anggard EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J (1995) Plasma 8-epi-PGF2 alpha levels are elevated in individuals with noninsulin-dependent diabetes mellitus. FEBS Lett 368(2):225–229

    Article  CAS  PubMed  Google Scholar 

  17. Halvorsen BL, Carlsen MH, Phillips KM, Bohn SK, Holte K, Jacobs DR Jr, Blomhoff R (2006) Content of redox-active compounds (i.e., antioxidants) in foods consumed in the United States. Am J Clin Nutr 84(1):95–135

    CAS  PubMed  Google Scholar 

  18. Halvorsen BL, Holte K, Myhrstad MC, Barikmo I, Hvattum E, Remberg SF, Wold AB, Haffner K, Baugerod H, Andersen LF, Moskaug O, Jacobs DR Jr, Blomhoff R (2002) A systematic screening of total antioxidants in dietary plants. J Nutr 132(3):461–471

    CAS  PubMed  Google Scholar 

  19. Ruiz H, de Eguílaz M, Pérez-Diez S, Navas-Carretero S, Martínez J (2010) Comparative study of body composition measures by dual X-ray absorptiometry, bioimpedance, and skinfolds in women. An R Acad Nac Farm 76(2):209–222

    Google Scholar 

  20. Kelly AS, Steinberger J, Kaiser DR, Olson TP, Bank AJ, Dengel DR (2006) Oxidative stress and adverse adipokine profile characterize the metabolic syndrome in children. J Cardiometab Syndr 1(4):248–252

    Article  PubMed  Google Scholar 

  21. Koletzko B, Dokoupil K, Reitmayr S, Weimert-Harendza B, Keller E (2000) Dietary fat intakes in infants and primary school children in Germany. Am J Clin Nutr 72(5 Suppl):1392S–1398S

    CAS  PubMed  Google Scholar 

  22. Marques M, Moleres A, Rendo-Urteaga T, Gomez-Martinez S, Zapatera B, Romero P, de Miguel-Etayo P, Campoy C, Alfredo Martinez J, Azcona-San Julian C, Marcos A, Marti A, Warnberg J (2012) Design of the nutritional therapy for overweight and obese Spanish adolescents conducted by registered dieticians: the EVASYON study. Nutr Hosp 27(1):165–176. doi:10.1590/S0212-16112012000100020

    PubMed  Google Scholar 

  23. Martin-Moreno JM, Boyle P, Gorgojo L, Maisonneuve P, Fernandez-Rodriguez JC, Salvini S, Willett WC (1993) Development and validation of a food frequency questionnaire in Spain. Int J Epidemiol 22(3):512–519

    Article  CAS  PubMed  Google Scholar 

  24. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  CAS  PubMed  Google Scholar 

  25. Melissas J, Malliaraki N, Papadakis JA, Taflampas P, Kampa M, Castanas E (2006) Plasma antioxidant capacity in morbidly obese patients before and after weight loss. Obes Surg 16(3):314–320. doi:10.1381/096089206776116444

    Article  PubMed  Google Scholar 

  26. Meydani M, Hasan ST (2010) Dietary polyphenols and obesity. Nutrients 2(7):737–751. doi:10.3390/nu2070737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mohn A, Catino M, Capanna R, Giannini C, Marcovecchio M, Chiarelli F (2005) Increased oxidative stress in prepubertal severely obese children: effect of a dietary restriction-weight loss program. J Clin Endocrinol Metab 90(5):2653–2658. doi:10.1210/jc.2004-2178

    Article  CAS  PubMed  Google Scholar 

  28. Moleres A, Rendo-Urteaga T, Azcona C, Martinez JA, Gomez-Martinez S, Ruiz JR, Moreno LA, Marcos A, Marti A (2009) Il6 gene promoter polymorphism (-174G/C) influences the association between fat mass and cardiovascular risk factors. J Physiol Biochem 65(4):405–413. doi:10.1007/BF03185936

    Article  CAS  PubMed  Google Scholar 

  29. Molnar D, Decsi T, Koletzko B (2004) Reduced antioxidant status in obese children with multimetabolic syndrome. Int J Obes Relat Metab Disord 28(10):1197–1202. doi:10.1038/sj.ijo.0802719

    Article  CAS  PubMed  Google Scholar 

  30. Moreno LA, Fleta J, Mur L, Feja C, Sarria A, Bueno M (1997) Indices of body fat distribution in Spanish children aged 4.0 to 14.9 years. J Pediatr Gastroenterol Nutr 25(2):175–181

    Article  CAS  PubMed  Google Scholar 

  31. Moreno LA, Ochoa MC, Warnberg J, Marti A, Martinez JA, Marcos A (2008) Treatment of obesity in children and adolescents. How nutrition can work? Int J Pediatr Obes 3(Suppl 1):72–77. doi:10.1080/17477160801897158

    Article  PubMed  Google Scholar 

  32. Ochoa MC, Moreno-Aliaga MJ, Martinez-Gonzalez MA, Martinez JA, Marti A (2007) Predictor factors for childhood obesity in a Spanish case–control study. Nutrition 23(5):379–384. doi:10.1016/j.nut.2007.02.004

    Article  PubMed  Google Scholar 

  33. Pellegrini N, Salvatore S, Valtuena S, Bedogni G, Porrini M, Pala V, Del Rio D, Sieri S, Miglio C, Krogh V, Zavaroni I, Brighenti F (2007) Development and validation of a food frequency questionnaire for the assessment of dietary total antioxidant capacity. J Nutr 137(1):93–98

    CAS  PubMed  Google Scholar 

  34. Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages, and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133(9):2812–2819

    CAS  PubMed  Google Scholar 

  35. Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F (2006) Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals, and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res 50(11):1030–1038. doi:10.1002/mnfr.200600067

    Article  CAS  PubMed  Google Scholar 

  36. Puchau B, Ochoa MC, Zulet MA, Marti A, Martinez JA, Members G (2010) Dietary total antioxidant capacity and obesity in children and adolescents. Int J Food Sci Nutr 61(7):713–721. doi:10.3109/09637481003757860

    Article  PubMed  Google Scholar 

  37. Puchau B, Zulet MA, de Echavarri AG, Hermsdorff HH, Martinez JA (2009) Dietary total antioxidant capacity: a novel indicator of diet quality in healthy young adults. J Am Coll Nutr 28(6):648–656

    Article  PubMed  Google Scholar 

  38. Puchau B, Zulet MA, de Echavarri AG, Hermsdorff HH, Martinez JA (2010) Dietary total antioxidant capacity is negatively associated with some metabolic syndrome features in healthy young adults. Nutrition 26(5):534–541. doi:10.1016/j.nut.2009.06.017

    Article  CAS  PubMed  Google Scholar 

  39. Puchau B, Zulet MA, Gonzalez de Echavarri A, Navarro-Blasco I, Martinez JA (2009) Selenium intake reduces serum C3, an early marker of metabolic syndrome manifestations, in healthy young adults. Eur J Clin Nutr 63(7):858–864. doi:10.1038/ejcn.2008.48

    Article  CAS  PubMed  Google Scholar 

  40. Puchau B, Zulet MA, Urtiaga G, Navarro-Blasco I, Martinez JA (2009) Asymmetric dimethylarginine association with antioxidants intake in healthy young adults: a role as an indicator of metabolic syndrome features. Metabolism 58(10):1483–1488. doi:10.1016/j.metabol.2009.04.037

    Article  CAS  PubMed  Google Scholar 

  41. Rautiainen S, Serafini M, Morgenstern R, Prior RL, Wolk A (2008) The validity and reproducibility of food-frequency questionnaire-based total antioxidant capacity estimates in Swedish women. Am J Clin Nutr 87(5):1247–1253

    CAS  PubMed  Google Scholar 

  42. Reinehr T, Kleber M, Toschke AM (2009) Lifestyle intervention in obese children is associated with a decrease of the metabolic syndrome prevalence. Atherosclerosis 207(1):174–180. doi:10.1016/j.atherosclerosis.2009.03.041

    Article  CAS  PubMed  Google Scholar 

  43. Rendo-Urteaga T, Garcia-Calzon S, Martinez-Anso E, Chueca M, Oyarzabal M, Azcona-Sanjulian MC, Bustos M, Moreno-Aliaga MJ, Martinez JA, Marti A (2013) Decreased cardiotrophin-1 levels are associated with a lower risk of developing the metabolic syndrome in overweight/obese children after a weight loss program. Metabolism 62(10):1429–1436. doi:10.1016/j.metabol.2013.05.011

    Article  CAS  PubMed  Google Scholar 

  44. Salvatore S, Pellegrini N, Brenna OV, Del Rio D, Frasca G, Brighenti F, Tumino R (2005) Antioxidant characterization of some Sicilian edible wild greens. J Agric Food Chem 53(24):9465–9471. doi:10.1021/jf051806r

    Article  CAS  PubMed  Google Scholar 

  45. Sanchez-Villegas A, Ara I, Dierssen T, de la Fuente C, Ruano C, Martinez-Gonzalez MA (2012) Physical activity during leisure time and quality of life in a Spanish cohort: SUN (Seguimiento Universidad de Navarra) project. Br J Sports Med 46(6):443–448. doi:10.1136/bjsm.2010.081836

    Article  PubMed  Google Scholar 

  46. Schofield WN (1985) Predicting basal metabolic rate, new standards, and review of previous work. Hum Nutr Clin Nutr 39(Suppl 1):5–41

    PubMed  Google Scholar 

  47. Serafini M, Del Rio D (2004) Understanding the association between dietary antioxidants, redox status, and disease: is the total antioxidant capacity the right tool? Redox Rep 9(3):145–152. doi:10.1179/135100004225004814

    Article  CAS  PubMed  Google Scholar 

  48. Sinaiko AR, Steinberger J, Moran A, Prineas RJ, Vessby B, Basu S, Tracy R, Jacobs DR Jr (2005) Relation of body mass index and insulin resistance to cardiovascular risk factors, inflammatory factors, and oxidative stress during adolescence. Circulation 111(15):1985–1991. doi:10.1161/01.CIR.0000161837.23846.57

    Article  CAS  PubMed  Google Scholar 

  49. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51(3):170–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Thompson HJ, Heimendinger J, Sedlacek S, Haegele A, Diker A, O’Neill C, Meinecke B, Wolfe P, Zhu Z, Jiang W (2005) 8-Isoprostane F2alpha excretion is reduced in women by increased vegetable and fruit intake. Am J Clin Nutr 82(4):768–776

    CAS  PubMed  Google Scholar 

  51. Tsai IJ, Croft KD, Mori TA, Falck JR, Beilin LJ, Puddey IB, Barden AE (2009) 20-HETE and F2-isoprostanes in the metabolic syndrome: the effect of weight reduction. Free Radic Biol Med 46(2):263–270. doi:10.1016/j.freeradbiomed.2008.10.028

    Article  CAS  PubMed  Google Scholar 

  52. Urakawa H, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Morioka K, Maruyama N, Kitagawa N, Tanaka T, Hori Y, Nakatani K, Yano Y, Adachi Y (2003) Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 88(10):4673–4676

    Article  CAS  PubMed  Google Scholar 

  53. Waling M, Lind T, Hernell O, Larsson C (2010) A 1-year intervention has modest effects on energy and macronutrient intakes of overweight and obese Swedish children. J Nutr 140(10):1793–1798. doi:10.3945/jn.110.125435

    Article  PubMed  Google Scholar 

  54. Weker H (2006) Simple obesity in children. A study on the role of nutritional factors. Med Wieku Rozwoj 10(1):3–191

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank the children and their parents for their participation in this study. Research relating to this article was funded by grants from the Navarra Government, Departamento de Salud (grant PI 54/2009), Linea Especial, Nutrición y Obesidad (University of Navarra), Carlos III Health Institute (CIBER project, CB06/03/1017). The scholarships to T. Rendo-Urteaga from the Asociación de Amigos de la Universidad de Navarra is fully acknowledged. The proofreading of the final version by Massimiliano Marinoni is gratefully acknowledged.

Disclosure statement

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Marti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendo-Urteaga, T., Puchau, B., Chueca, M. et al. Total antioxidant capacity and oxidative stress after a 10-week dietary intervention program in obese children. Eur J Pediatr 173, 609–616 (2014). https://doi.org/10.1007/s00431-013-2229-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-013-2229-7

Keywords

Navigation