European Journal of Pediatrics

, Volume 173, Issue 5, pp 609–616 | Cite as

Total antioxidant capacity and oxidative stress after a 10-week dietary intervention program in obese children

  • T. Rendo-Urteaga
  • B. Puchau
  • M. Chueca
  • M. Oyarzabal
  • M. C. Azcona-Sanjulián
  • J. A. Martínez
  • A. Marti
Original Article


Dietary and serum total antioxidant capacity (TAC) are considered appropriate tools for investigating the potential health effects of dietary antioxidants consumed in mixed diets. The aim was to analyze the impact of a dietary intervention on macronutrient intakes and to evaluate the improvement on oxidative status after weight loss (WL) by measuring dietary and serum TAC, and urinary F2-isoprostane levels as markers of oxidative stress. Forty-four overweight/obese children (mean age 11.5 years) were enrolled to undergo a 10-week WL program. They were dichotomized at the median of body mass index–standard deviation score (BMI-SDS) change, as high (HR) and low responders (LR) after intervention. Subjects were prescribed with a fixed full-day meal diet, calculated according to their basal metabolic rate and physical activity levels. A validated food-frequency questionnaire was used to retrospectively calculate TAC and daily nutrient intake. The HR subjects were able to reduce anthropometric indices and to improve lipid and glucose profile. They also significantly diminished fat intake (p = 0.013). Moreover, baseline serum TAC values did significantly predict the reduction in urinary F2 isoprostane (B = −0.236 (−0.393 to −0.078); p = 0.014) in the HR group after the WL program. Notably, changes in dietary TAC after the treatment were associated with a decrease in body weight after the 10-week intervention (B = −2.815 (−5.313 to −0.318), p = 0.029) in the HR group. The -ΔSerumTAC/ΔDietaryTAC and the -ΔF2Isoprostane/ΔDietaryTAC ratios revealed that the relationships between oxidative markers and antioxidants dietary intake were more favorable in the HR than in the LR group. Conclusion: Our study showed that a 10-week WL program was able to reduce adiposity indices in obese children. Moreover, after the intervention changes in dietary TAC and WL were significantly associated. Our result suggests that specific food with a high TAC content (such as fruits, vegetables, and legumes) could be recommended to improve WL.


Obese children Oxidative stress Antioxidant capacity Obesity Intervention Isoprostane 



We thank the children and their parents for their participation in this study. Research relating to this article was funded by grants from the Navarra Government, Departamento de Salud (grant PI 54/2009), Linea Especial, Nutrición y Obesidad (University of Navarra), Carlos III Health Institute (CIBER project, CB06/03/1017). The scholarships to T. Rendo-Urteaga from the Asociación de Amigos de la Universidad de Navarra is fully acknowledged. The proofreading of the final version by Massimiliano Marinoni is gratefully acknowledged.

Disclosure statement

The authors have nothing to disclose.


  1. 1.
    Agudo A, Cabrera L, Amiano P, Ardanaz E, Barricarte A, Berenguer T, Chirlaque MD, Dorronsoro M, Jakszyn P, Larranaga N, Martinez C, Navarro C, Quiros JR, Sanchez MJ, Tormo MJ, Gonzalez CA (2007) Fruit and vegetable intakes, dietary antioxidant nutrients, and total mortality in Spanish adults: findings from the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). Am J Clin Nutr 85(6):1634–1642PubMedGoogle Scholar
  2. 2.
    Bahadoran Z, Golzarand M, Mirmiran P, Shiva N, Azizi F (2012) Dietary total antioxidant capacity and the occurrence of metabolic syndrome and its components after a 3-year follow-up in adults: Tehran Lipid and Glucose Study. Nutr Metab (Lond) 9(1):70. doi: 10.1186/1743-7075-9-70 CrossRefGoogle Scholar
  3. 3.
    Brighenti F, Valtuena S, Pellegrini N, Ardigo D, Del Rio D, Salvatore S, Piatti P, Serafini M, Zavaroni I (2005) Total antioxidant capacity of the diet is inversely and independently related to plasma concentration of high-sensitivity C-reactive protein in adult Italian subjects. Br J Nutr 93(5):619–625PubMedCrossRefGoogle Scholar
  4. 4.
    Codoner-Franch P, Boix-Garcia L, Simo-Jorda R, Del Castillo-Villaescusa C, Maset-Maldonado J, Valls-Belles V (2010) Is obesity associated with oxidative stress in children? Int J Pediatr Obes 5(1):56–63. doi: 10.3109/17477160903055945 PubMedCrossRefGoogle Scholar
  5. 5.
    Codoner-Franch P, Lopez-Jaen AB, De La Mano-Hernandez A, Sentandreu E, Simo-Jorda R, Valls-Belles V (2010) Oxidative markers in children with severe obesity following low-calorie diets supplemented with mandarin juice. Acta Paediatr 99(12):1841–1846. doi: 10.1111/j.1651-2227.2010.01903.x PubMedCrossRefGoogle Scholar
  6. 6.
    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320(7244):1240–1243PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Coppen AM, Risser JA, Vash PD (2008) Metabolic syndrome resolution in children and adolescents after 10 weeks of weight loss. J Cardiometab Syndr 3(4):205–210. doi: 10.1111/j.1559-4572.2008.00016.x PubMedCrossRefGoogle Scholar
  8. 8.
    Cracowski JL, Durand T, Bessard G (2002) Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology, and clinical implications. Trends Pharmacol Sci 23(8):360–366PubMedCrossRefGoogle Scholar
  9. 9.
    Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity, and diabetes. Trends Immunol 25(1):4–7PubMedCrossRefGoogle Scholar
  10. 10.
    Desideri G, De Simone M, Iughetti L, Rosato T, Iezzi ML, Marinucci MC, Cofini V, Croce G, Passacquale G, Necozione S, Ferri C (2005) Early activation of vascular endothelial cells and platelets in obese children. J Clin Endocrinol Metab 90(6):3145–3152. doi: 10.1210/jc.2004-1741 PubMedCrossRefGoogle Scholar
  11. 11.
    Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation—a review. Curr Med Chem 10(17):1723–1740PubMedCrossRefGoogle Scholar
  12. 12.
    Ford AL, Hunt LP, Cooper A, Shield JP (2010) What reduction in BMI SDS is required in obese adolescents to improve body composition and cardiometabolic health? Arch Dis Child 95(4):256–261. doi: 10.1136/adc.2009.165340 PubMedCrossRefGoogle Scholar
  13. 13.
    Fulop T, Tessier D, Carpentier A (2006) The metabolic syndrome. Pathol Biol (Paris) 54(7):375–386. doi: 10.1016/j.patbio.2006.07.002 CrossRefGoogle Scholar
  14. 14.
    Gao Z, Novick M, Muller MD, Williams RJ, Spilk S, Leuenberger UA, Sinoway LI (2012) Exercise and diet-induced weight loss attenuates oxidative stress related-coronary vasoconstriction in obese adolescents. Eur J Appl Physiol. doi: 10.1007/s00421-012-2459-9 Google Scholar
  15. 15.
    Gharib N, Rasheed P (2011) Energy and macronutrient intake and dietary pattern among school children in Bahrain: a cross-sectional study. Nutr J 10:62. doi: 10.1186/1475-2891-10-62 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gopaul NK, Anggard EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J (1995) Plasma 8-epi-PGF2 alpha levels are elevated in individuals with noninsulin-dependent diabetes mellitus. FEBS Lett 368(2):225–229PubMedCrossRefGoogle Scholar
  17. 17.
    Halvorsen BL, Carlsen MH, Phillips KM, Bohn SK, Holte K, Jacobs DR Jr, Blomhoff R (2006) Content of redox-active compounds (i.e., antioxidants) in foods consumed in the United States. Am J Clin Nutr 84(1):95–135PubMedGoogle Scholar
  18. 18.
    Halvorsen BL, Holte K, Myhrstad MC, Barikmo I, Hvattum E, Remberg SF, Wold AB, Haffner K, Baugerod H, Andersen LF, Moskaug O, Jacobs DR Jr, Blomhoff R (2002) A systematic screening of total antioxidants in dietary plants. J Nutr 132(3):461–471PubMedGoogle Scholar
  19. 19.
    Ruiz H, de Eguílaz M, Pérez-Diez S, Navas-Carretero S, Martínez J (2010) Comparative study of body composition measures by dual X-ray absorptiometry, bioimpedance, and skinfolds in women. An R Acad Nac Farm 76(2):209–222Google Scholar
  20. 20.
    Kelly AS, Steinberger J, Kaiser DR, Olson TP, Bank AJ, Dengel DR (2006) Oxidative stress and adverse adipokine profile characterize the metabolic syndrome in children. J Cardiometab Syndr 1(4):248–252PubMedCrossRefGoogle Scholar
  21. 21.
    Koletzko B, Dokoupil K, Reitmayr S, Weimert-Harendza B, Keller E (2000) Dietary fat intakes in infants and primary school children in Germany. Am J Clin Nutr 72(5 Suppl):1392S–1398SPubMedGoogle Scholar
  22. 22.
    Marques M, Moleres A, Rendo-Urteaga T, Gomez-Martinez S, Zapatera B, Romero P, de Miguel-Etayo P, Campoy C, Alfredo Martinez J, Azcona-San Julian C, Marcos A, Marti A, Warnberg J (2012) Design of the nutritional therapy for overweight and obese Spanish adolescents conducted by registered dieticians: the EVASYON study. Nutr Hosp 27(1):165–176. doi: 10.1590/S0212-16112012000100020 PubMedGoogle Scholar
  23. 23.
    Martin-Moreno JM, Boyle P, Gorgojo L, Maisonneuve P, Fernandez-Rodriguez JC, Salvini S, Willett WC (1993) Development and validation of a food frequency questionnaire in Spain. Int J Epidemiol 22(3):512–519PubMedCrossRefGoogle Scholar
  24. 24.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419PubMedCrossRefGoogle Scholar
  25. 25.
    Melissas J, Malliaraki N, Papadakis JA, Taflampas P, Kampa M, Castanas E (2006) Plasma antioxidant capacity in morbidly obese patients before and after weight loss. Obes Surg 16(3):314–320. doi: 10.1381/096089206776116444 PubMedCrossRefGoogle Scholar
  26. 26.
    Meydani M, Hasan ST (2010) Dietary polyphenols and obesity. Nutrients 2(7):737–751. doi: 10.3390/nu2070737 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mohn A, Catino M, Capanna R, Giannini C, Marcovecchio M, Chiarelli F (2005) Increased oxidative stress in prepubertal severely obese children: effect of a dietary restriction-weight loss program. J Clin Endocrinol Metab 90(5):2653–2658. doi: 10.1210/jc.2004-2178 PubMedCrossRefGoogle Scholar
  28. 28.
    Moleres A, Rendo-Urteaga T, Azcona C, Martinez JA, Gomez-Martinez S, Ruiz JR, Moreno LA, Marcos A, Marti A (2009) Il6 gene promoter polymorphism (-174G/C) influences the association between fat mass and cardiovascular risk factors. J Physiol Biochem 65(4):405–413. doi: 10.1007/BF03185936 PubMedCrossRefGoogle Scholar
  29. 29.
    Molnar D, Decsi T, Koletzko B (2004) Reduced antioxidant status in obese children with multimetabolic syndrome. Int J Obes Relat Metab Disord 28(10):1197–1202. doi: 10.1038/sj.ijo.0802719 PubMedCrossRefGoogle Scholar
  30. 30.
    Moreno LA, Fleta J, Mur L, Feja C, Sarria A, Bueno M (1997) Indices of body fat distribution in Spanish children aged 4.0 to 14.9 years. J Pediatr Gastroenterol Nutr 25(2):175–181PubMedCrossRefGoogle Scholar
  31. 31.
    Moreno LA, Ochoa MC, Warnberg J, Marti A, Martinez JA, Marcos A (2008) Treatment of obesity in children and adolescents. How nutrition can work? Int J Pediatr Obes 3(Suppl 1):72–77. doi: 10.1080/17477160801897158 PubMedCrossRefGoogle Scholar
  32. 32.
    Ochoa MC, Moreno-Aliaga MJ, Martinez-Gonzalez MA, Martinez JA, Marti A (2007) Predictor factors for childhood obesity in a Spanish case–control study. Nutrition 23(5):379–384. doi: 10.1016/j.nut.2007.02.004 PubMedCrossRefGoogle Scholar
  33. 33.
    Pellegrini N, Salvatore S, Valtuena S, Bedogni G, Porrini M, Pala V, Del Rio D, Sieri S, Miglio C, Krogh V, Zavaroni I, Brighenti F (2007) Development and validation of a food frequency questionnaire for the assessment of dietary total antioxidant capacity. J Nutr 137(1):93–98PubMedGoogle Scholar
  34. 34.
    Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages, and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133(9):2812–2819PubMedGoogle Scholar
  35. 35.
    Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F (2006) Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals, and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res 50(11):1030–1038. doi: 10.1002/mnfr.200600067 PubMedCrossRefGoogle Scholar
  36. 36.
    Puchau B, Ochoa MC, Zulet MA, Marti A, Martinez JA, Members G (2010) Dietary total antioxidant capacity and obesity in children and adolescents. Int J Food Sci Nutr 61(7):713–721. doi: 10.3109/09637481003757860 PubMedCrossRefGoogle Scholar
  37. 37.
    Puchau B, Zulet MA, de Echavarri AG, Hermsdorff HH, Martinez JA (2009) Dietary total antioxidant capacity: a novel indicator of diet quality in healthy young adults. J Am Coll Nutr 28(6):648–656PubMedCrossRefGoogle Scholar
  38. 38.
    Puchau B, Zulet MA, de Echavarri AG, Hermsdorff HH, Martinez JA (2010) Dietary total antioxidant capacity is negatively associated with some metabolic syndrome features in healthy young adults. Nutrition 26(5):534–541. doi: 10.1016/j.nut.2009.06.017 PubMedCrossRefGoogle Scholar
  39. 39.
    Puchau B, Zulet MA, Gonzalez de Echavarri A, Navarro-Blasco I, Martinez JA (2009) Selenium intake reduces serum C3, an early marker of metabolic syndrome manifestations, in healthy young adults. Eur J Clin Nutr 63(7):858–864. doi: 10.1038/ejcn.2008.48 PubMedCrossRefGoogle Scholar
  40. 40.
    Puchau B, Zulet MA, Urtiaga G, Navarro-Blasco I, Martinez JA (2009) Asymmetric dimethylarginine association with antioxidants intake in healthy young adults: a role as an indicator of metabolic syndrome features. Metabolism 58(10):1483–1488. doi: 10.1016/j.metabol.2009.04.037 PubMedCrossRefGoogle Scholar
  41. 41.
    Rautiainen S, Serafini M, Morgenstern R, Prior RL, Wolk A (2008) The validity and reproducibility of food-frequency questionnaire-based total antioxidant capacity estimates in Swedish women. Am J Clin Nutr 87(5):1247–1253PubMedGoogle Scholar
  42. 42.
    Reinehr T, Kleber M, Toschke AM (2009) Lifestyle intervention in obese children is associated with a decrease of the metabolic syndrome prevalence. Atherosclerosis 207(1):174–180. doi: 10.1016/j.atherosclerosis.2009.03.041 PubMedCrossRefGoogle Scholar
  43. 43.
    Rendo-Urteaga T, Garcia-Calzon S, Martinez-Anso E, Chueca M, Oyarzabal M, Azcona-Sanjulian MC, Bustos M, Moreno-Aliaga MJ, Martinez JA, Marti A (2013) Decreased cardiotrophin-1 levels are associated with a lower risk of developing the metabolic syndrome in overweight/obese children after a weight loss program. Metabolism 62(10):1429–1436. doi: 10.1016/j.metabol.2013.05.011 PubMedCrossRefGoogle Scholar
  44. 44.
    Salvatore S, Pellegrini N, Brenna OV, Del Rio D, Frasca G, Brighenti F, Tumino R (2005) Antioxidant characterization of some Sicilian edible wild greens. J Agric Food Chem 53(24):9465–9471. doi: 10.1021/jf051806r PubMedCrossRefGoogle Scholar
  45. 45.
    Sanchez-Villegas A, Ara I, Dierssen T, de la Fuente C, Ruano C, Martinez-Gonzalez MA (2012) Physical activity during leisure time and quality of life in a Spanish cohort: SUN (Seguimiento Universidad de Navarra) project. Br J Sports Med 46(6):443–448. doi: 10.1136/bjsm.2010.081836 PubMedCrossRefGoogle Scholar
  46. 46.
    Schofield WN (1985) Predicting basal metabolic rate, new standards, and review of previous work. Hum Nutr Clin Nutr 39(Suppl 1):5–41PubMedGoogle Scholar
  47. 47.
    Serafini M, Del Rio D (2004) Understanding the association between dietary antioxidants, redox status, and disease: is the total antioxidant capacity the right tool? Redox Rep 9(3):145–152. doi: 10.1179/135100004225004814 PubMedCrossRefGoogle Scholar
  48. 48.
    Sinaiko AR, Steinberger J, Moran A, Prineas RJ, Vessby B, Basu S, Tracy R, Jacobs DR Jr (2005) Relation of body mass index and insulin resistance to cardiovascular risk factors, inflammatory factors, and oxidative stress during adolescence. Circulation 111(15):1985–1991. doi: 10.1161/01.CIR.0000161837.23846.57 PubMedCrossRefGoogle Scholar
  49. 49.
    Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51(3):170–179PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Thompson HJ, Heimendinger J, Sedlacek S, Haegele A, Diker A, O’Neill C, Meinecke B, Wolfe P, Zhu Z, Jiang W (2005) 8-Isoprostane F2alpha excretion is reduced in women by increased vegetable and fruit intake. Am J Clin Nutr 82(4):768–776PubMedGoogle Scholar
  51. 51.
    Tsai IJ, Croft KD, Mori TA, Falck JR, Beilin LJ, Puddey IB, Barden AE (2009) 20-HETE and F2-isoprostanes in the metabolic syndrome: the effect of weight reduction. Free Radic Biol Med 46(2):263–270. doi: 10.1016/j.freeradbiomed.2008.10.028 PubMedCrossRefGoogle Scholar
  52. 52.
    Urakawa H, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Morioka K, Maruyama N, Kitagawa N, Tanaka T, Hori Y, Nakatani K, Yano Y, Adachi Y (2003) Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 88(10):4673–4676PubMedCrossRefGoogle Scholar
  53. 53.
    Waling M, Lind T, Hernell O, Larsson C (2010) A 1-year intervention has modest effects on energy and macronutrient intakes of overweight and obese Swedish children. J Nutr 140(10):1793–1798. doi: 10.3945/jn.110.125435 PubMedCrossRefGoogle Scholar
  54. 54.
    Weker H (2006) Simple obesity in children. A study on the role of nutritional factors. Med Wieku Rozwoj 10(1):3–191PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • T. Rendo-Urteaga
    • 1
  • B. Puchau
    • 1
  • M. Chueca
    • 2
  • M. Oyarzabal
    • 2
  • M. C. Azcona-Sanjulián
    • 3
  • J. A. Martínez
    • 1
    • 4
  • A. Marti
    • 1
    • 4
  1. 1.Department of Nutrition, Food Science and Physiology, University of NavarraPamplonaSpain
  2. 2.Pediatric Endocrinology Unit, Complejo Hospitalario de NavarraPamplonaSpain
  3. 3.Pediatric Endocrinology Unit, Department of PediatricsClínica Universidad de NavarraPamplonaSpain
  4. 4.CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain

Personalised recommendations