Skip to main content

Leukocyte DNA damage in children with iron deficiency anemia: effect of iron supplementation

Abstract

Iron deficiency is frequently associated with anemia. Iron is a transition-metal ion, and it can induce free radical formation, which leads to formation of various lesions in DNA, proteins, and lipids. The aim of this study was to investigate baseline oxidative DNA damage and to clarify the role of the administration of a therapeutic dose of iron on DNA oxidation in children with iron deficiency anemia (IDA). Twenty-seven children with IDA and 20 healthy children were enrolled in the study. Leukocyte DNA damage (strand breaks and Fpg-sensitive sites) was assessed using comet assay before and after 12 weeks of daily iron administration. Before the iron administration, the frequency of DNA strand breaks in the children with IDA was found to be lower than those in the control group (P < 0.05), but there was not a significant difference for frequency of Fpg-sensitive sites. After 12 weeks of iron administration, the frequency of both DNA strand breaks and Fpg-sensitive sites were found to be increased (P < 0.01). No significant association was determined between DNA damage parameters and hemoglobin, hematocrit, serum iron, total iron binding capacity, and ferritin. In conclusion, basal level of DNA strand breaks is at a low level in children with IDA. After iron administration, DNA strand breaks and Fpg-sensitive sites, which represent oxidatively damaged DNA, increased. However, this increase was unrelated to serum level of iron and ferritin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Acharya J, Punchard NA, Taylor JA, Thompson RP, Pearson TC (1991) Red cell lipid peroxidation and antioxidant enzymes in iron deficiency. Eur J Haematol 47:287–291

    CAS  PubMed  Google Scholar 

  2. Aslan M, Horoz M, Kocyigit A, Ozgonul S, Celik H, Celik M, Erel O (2006) Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia. Mutation Res 601(1–2):144–149

    CAS  PubMed  Google Scholar 

  3. Bacon BR, Britton SR (1990) The pathology of hepatic iron overload: a free radical mediated process. Hepatology 11(1):127–134

    Article  CAS  PubMed  Google Scholar 

  4. Bartal M, Mazor D, Dvilansky A, Meyerstein N (1993) Iron deficiency anemia: recovery from in vitro oxidative stres. Acta Haematol 90:94–98

    Article  CAS  PubMed  Google Scholar 

  5. Berrak SG, Angaji M, Turkkan E, Canpolat C, Timur C, Eksioglu-Demiralp E (2007) The effects of iron deficiency on neutrophil/monocyte apoptosis in children. Cell Prolif 40(5):741–754

    Article  CAS  PubMed  Google Scholar 

  6. Binet JL, Mentz F, Merle-Beral H (1996) Apoptosis in blood diseases. Review new data. Hematol Cell Ther 38(3):253–264

    Article  CAS  PubMed  Google Scholar 

  7. Cachofeiro V, Goicochea M, de Vinuesa SG, Oubina P, Lahera V, Luno J (2008) Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl (111):S4–S9

  8. Candiano G, Petretto A, Bruschi M, Santucci L, Dimuccio V, Prunotto M, Gusmano R, Urbani A, Ghiggeri GM (2009) The oxido-redox potential of albumin methodological approach and relevance to human diseases. J proteomics 73(2):188–195

    Article  CAS  PubMed  Google Scholar 

  9. Collins AR, Ai-guo M, Duthie SJ (1995) The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res 336:69–77

    CAS  PubMed  Google Scholar 

  10. Collins AR, Dobson VL, Dusinska M, Kennedy G, Stetina R (1997) The comet assay: what can it really tell us? Mutat Res 375:183–193

    CAS  PubMed  Google Scholar 

  11. Collins AR, Raslova K, Somorovska M, Petrovska H, Ondrusova A, Vohnout B, Fabry R, Dusinska M (1998) DNA damage in diabetes: correlation with a clinical marker. Free Radic Biol Med 25(3):373–377

    Article  CAS  PubMed  Google Scholar 

  12. Dincer Y, Akcay T, Alademir Z, Ilkova H (2002) Assesment of DNA base oxidation and glutathione level in patients with type 2 diabetes. Mutat Res 505(1–2):75–81

    CAS  PubMed  Google Scholar 

  13. Dizdaroglu M (1991) Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med 10:225–242

    Article  CAS  PubMed  Google Scholar 

  14. Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567(1):1–61

    Article  CAS  PubMed  Google Scholar 

  15. Galleano M, Puntarulo S (1995) Role of antioxidant on the erythrocyte resistance to lipid peroxidation after acut iron overload in rats. Biochim Biophys Acta 1271(3):321–326

    PubMed  Google Scholar 

  16. Glader B (2004) Iron-deficiency anemia. In: Behrmann RE, Kliegman RM, Jenson HB (eds) Nelson textbook of pediatrics, 17th edn. WB Saunders, Philadelphia, pp 1614–1616

    Google Scholar 

  17. Green MHL, Love JE, Delaney CA, Green IC (1996) Comet assay to detect nitric oxide-dependent DNA damage in mammalian cells. Methods Enzymol 269:243–266

    Article  CAS  PubMed  Google Scholar 

  18. Jansson LT, Perkkio MV, Willis WT, Refino CJ, Dalman PR (1985) Red cell superoxide dismutase is increased in iron deficiency anemia. Acta Haematol 74:218–221

    Article  CAS  PubMed  Google Scholar 

  19. Kumerova A, Lece A, Skesters A, Silova A, Petuhovs V (1998) Anaemia and antioxidant defence of the red blood cells. Mater Med Pol 30(1–2):12–15

    CAS  PubMed  Google Scholar 

  20. Lindeman JH, Lentjes EG, van Zoeren-Grobben D, Berger HM (2000) Postnatal changes in plasma ceruloplasmin and transferrin antioxidant activities in preterm babies. Biol Neonate 78(2):73–76

    Article  CAS  PubMed  Google Scholar 

  21. Mimic-Oka J, Savic-Radojevic A, Pljesa-Ercegovac M, Opacic M, Smic T, Dimkovic N, Simic DV (2005) Evaluation of oxidative stress after repeated intravenous iron supplementation. Ren Fail 27(3):345–351

    CAS  PubMed  Google Scholar 

  22. Miranda A, Janssen L, Bosman CB, Van Duijin NW, Ostendorp-Van de Ruit MM, Kubben FJGM, Griffioen G, Lamers CBHW, Han J, Van Krieken JM, Van de Velde CJH, Verspaget HW (2000) Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin Cancer Res 6(8):3183–3192

    Google Scholar 

  23. Ramachandran M, Iyer GY (1984) Erythrocyte membrane lipid peroxidation in iron deficiency anemia. Experientia 40:173–174

    Article  CAS  PubMed  Google Scholar 

  24. Reed JC (1997) Cytochrome c: can't live with it—can't live without it. Cell 91(5):559–562

    Article  CAS  PubMed  Google Scholar 

  25. Rice-Evans CY, Baysal E (1987) İron-mediated oxidative stres in erythrocytes. Biochem J 244:191–196

    CAS  PubMed  Google Scholar 

  26. Rockey DC, Cello JP (1993) Evaluation of the gastrointestinal tract in patients with iron deficiency anemia. N Engl J Med 329:1691–1695

    Article  CAS  PubMed  Google Scholar 

  27. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  28. Steele RJ, Thompson AM, Hall PA, Pane DP (1998) The p53 tumour suppressor gene. Br J Surg 85(11):1460–1467

    Article  CAS  PubMed  Google Scholar 

  29. Stockman JA (1993) Anemia of iron deficiency. In: Burg FD, Ingelfinger JR, Wald ER (eds) Current pediatric therapy, 14th edn. WB Saunders, Philadelphia, pp 238–240

    Google Scholar 

  30. Sun Y (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med 8:583–589

    Article  CAS  PubMed  Google Scholar 

  31. Vaux DL, Strasser A (1996) The molecular biology of apoptosis. Proc Natl Acad Sci USA 93:2239–2244

    Article  CAS  PubMed  Google Scholar 

  32. Vives Corrons JL, Miguel-Garcia A, Pujades MA, Miguel-Sosa A, Cambiazzo S, Linares M, Dibarrart MT, Calvo MA (1995) Increased susceptibility of microcytic red blood cells to in vitro oxidative stress. Eur J Haematol 55(5):327–331

    Article  CAS  PubMed  Google Scholar 

  33. Zaidi A, Marden MC, Poyart C, Leclerc L (1995) Protection by Lazoroids of erythrocyte (Ca2+, Mg2+)-ATPase against iron induced inhibition. Eur J Pharmacol 290(2):133–139

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yildiz Dincer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aksu, B.Y., Hasbal, C., Himmetoglu, S. et al. Leukocyte DNA damage in children with iron deficiency anemia: effect of iron supplementation. Eur J Pediatr 169, 951–956 (2010). https://doi.org/10.1007/s00431-010-1147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-010-1147-1

Keywords

  • Iron deficiency anemia
  • DNA strand breaks
  • Fpg-sensitive sites
  • Comet assay
  • Iron supplementation