Skip to main content

Influence of dietary lipids on the erythrocyte antioxidant status of hypercholesterolaemic children

Abstract

The aim of this work was to examine the effect of dietary lipid intakes on the biomarkers of red cell antioxidant status in hypercholesterolaemic children. The study population included 34 children (18 boys and 16 girls) with cholesterol levels ≥5.2 mmol/l and 16 normolipidaemic children (9 boys and 7 girls) between 6 and 12 years of age. The status of the erythrocyte antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and reduced glutathione (GSH) were estimated spectrophotometrically. Dietary intake was assessed by 24-h recall and seven-day records. The hypercholesterolaemic children showed a decreased activity of antioxidant enzymes in relation to the control group. There was a negative correlation between energy intake and the activity of antioxidant enzymes (SOD and CAT) and GSH levels. Cholesterol intake was inversely correlated with CAT and GPx activity and GSH levels. The intake of polyunsaturated fat was positively correlated with the GPx activity. A decrease in the fat content of the diet for 6 months was proposed and 15 children followed the diet strictly. The activities of antioxidant enzymes in these children were significantly higher after the low-fat diet; the greatest increment was noted in the activity of GPx (91% with respect to the initial values), SOD was increased by 44% and CAT by 70%. We conclude that the intake of dietary lipids can modulate the antioxidant defence system, and an excess of energy and cholesterol has a negative influence on the antioxidant enzymes.

This is a preview of subscription content, access via your institution.

Abbreviations

BMI:

Body mass index

CAT:

Catalase

CVD:

Cardiovascular disease

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidised glutathione

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

MUFA:

Monounsaturated fatty acids

PUFA:

Polyunsaturated fatty acids

ROS:

Reactive oxygen species

SFA:

Saturated fatty acids

SOD:

Superoxide dismutase

VLDL:

Very low density lipoprotein

References

  1. 1.

    Belłowski J, Wójcicka G, Górny D, Marciniak A (2000) The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity. J Physiol Pharmacol 51:883–896

    PubMed  Google Scholar 

  2. 2.

    Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ; AtheroGene Investigators (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349:1605–1613

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Brigelius R, Muckel C, Akerboom TP, Sies H (1983) Identification and quantitation of glutathione in hepatic protein mixed disulfides and its relationship to glutathione disulfide. Biochem Pharmacol 32:2529–2534

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Casado A, de la Torre R, López-Fernández ME (2007) Copper/zinc superoxide dismutase activity in newborns & young people in Spain. Indian J Med Res 125:655–660

    PubMed  CAS  Google Scholar 

  5. 5.

    Clairbone A (1986) Catalase activity. In: Greenwald RA (ed) Handbook of methods for oxygen radicals research. CRC Press, Boca Raton, Florida, pp 283–284

    Google Scholar 

  6. 6.

    Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    PubMed  Article  Google Scholar 

  7. 7.

    Gaeta LM, Tozzi G, Pastore A, Federici G, Bertini E, Piemonte F (2002) Determination of superoxide dismutase and glutathione peroxidase activities in blood of healthy pediatric subjects. Clin Chim Acta 322:117–120

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Gidding SS, Dennison BA, Birch LL, Daniels SR, Gillman MW, Lichtenstein AH, Rattay KT, Steinberger J, Stettler N, Van Horn L; American Heart Association (2006) Dietary recommendations for children and adolescents: a guide for practitioners. Pediatrics 117:544–559

    PubMed  Article  Google Scholar 

  9. 9.

    Goldberg DM, Spooner RJ (1985) Glutathione reductase. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Verlag Chemie, Basel, Switzerland, pp 258–265

    Google Scholar 

  10. 10.

    Hussein O, Frydman G, Frim H, Aviram M (2001) Reduced susceptibility of low density lipoprotein to lipid peroxidation after cholestyramine treatment in heterozygous familial hypercholesterolemic children. Pathophysiology 8:21–28

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Jackson B, Dujovne CA, DeCoursey S, Beyer P, Brown EF, Hassanein K (1986) Methods to assess relative reliability of diet records: minimum records for monitoring lipid and caloric intake. J Am Diet Assoc 86:1531–1535

    PubMed  CAS  Google Scholar 

  12. 12.

    Jenkinson A, Franklin MF, Wahle K, Duthie GG (1999) Dietary intakes of polyunsaturated fatty acids and indices of oxidative stress in human volunteers. Eur J Clin Nutr 53:523–528

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Kavey RE, Daniels SR, Lauer RM, Atkins DL, Hayman LL, Taubert K; American Heart Association (2003) American Heart Association guidelines for primary prevention of atherosclerotic cardiovascular disease beginning in childhood. J Pediatr 142:368–372

    PubMed  Article  Google Scholar 

  14. 14.

    Lee MK, Bok SH, Jeong TS, Moon SS, Lee SE, Park YB, Choi MS (2002) Supplementation of naringenin and its synthetic derivative alters antioxidant enzyme activities of erythrocyte and liver in high cholesterol-fed rats. Bioorg Med Chem 10:2239–2244

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Mataix J (2004) Spanish food composition table, 4th edn. Granada University, Granada, Spain

    Google Scholar 

  17. 17.

    Mataix J, Mañas M, Llopis J, Martinez-Victoria E (2003) Food and health software. Asde Alimentación S.A., Valencia, Spain

    Google Scholar 

  18. 18.

    McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  19. 19.

    McCrindle BW (2006) Hyperlipidemia in children. Thromb Res 118:49–58

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Mehta JL, Li D (2001) Epinephrine upregulates superoxide dismutase in human coronary artery endothelial cells. Free Radic Biol Med 30:148–153

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Mohn A, Catino M, Capanna R, Giannini C, Marcovecchio M, Chiarelli F (2005) Increased oxidative stress in prepubertal severely obese children: effect of a dietary restriction-weight loss program. J Clin Endocrinol Metab 90:2653–2658

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    National Cholesterol Education Program (NCEP) (1992) Highlights of the report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents. Pediatrics 89:495–501

    Google Scholar 

  23. 23.

    Nobili V, Pastore A, Gaeta LM, Tozzi G, Comparcola D, Sartorelli MR, Marcellini M, Bertini E, Piemonte F (2005) Glutathione metabolism and antioxidant enzymes in patients affected by nonalcoholic steatohepatitis. Clin Chim Acta 355:105–111

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Puiggrós C, Chacón P, Armadans LI, Clapés J, Planas M (2002) Effects of oleic-rich and omega-3-rich diets on serum lipid pattern and lipid oxidation in mildly hypercholesterolemic patients. Clin Nutr 21:79–87

    PubMed  Article  Google Scholar 

  25. 25.

    Sánchez-Bayle M, González-Requejo A, Peláez MJ, Morales MT, Asensio-Antón J, Antón-Pacheco E (2008) A cross-sectional study of dietary habits and lipid profiles. The Rivas-Vaciamadrid study. Eur J Pediatr 167:149–154

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Sekeroğlu MR, Sahin H, Dülger H, Algün E (2000) The effect of dietary treatment on erythrocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase, and serum lipid peroxidation in patients with type 2 diabetes mellitus. Clin Biochem 33:669–674

    PubMed  Article  Google Scholar 

  27. 27.

    Serra-Majem L, García-Closas R, Ribas L, Pérez-Rodrigo C, Aranceta J (2001) Food patterns of Spanish schoolchildren and adolescents: The enKid Study. Public Health Nutr 4:1433–1438

    PubMed  CAS  Google Scholar 

  28. 28.

    Shih CK, Chang JH, Yang SH, Chou TW, Cheng HH (2008) beta-Carotene and canthaxanthin alter the pro-oxidation and antioxidation balance in rats fed a high-cholesterol and high-fat diet. Br J Nutr 99:59–66

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Siemianowicz K, Gmiński J, Francuz T, Wójcik A, Posielezna B (2003) Activity of antioxidant enzymes in children from families at high risk of premature coronary heart disease. Scand J Clin Lab Invest 63:151–158

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Sobradillo B, Aguirre A, Arestei U, Bilbao C, Fernández-Ramos A, Lizarraga A, Lorenzo H, Madariaga L, Rica I, Ruiz I, Sánchez E, Santamaría C, Serrano JM, Zabala A, Zurimendi B, Hernández M (2004) Curvas y tablas de crecimiento (estudio longitudinal y transversal). In: Fundación Faustino Orbegozo Eizaguirre (ed) Patrones de crecimiento y desarrollo en España. Atlas de gráficas y tablas. Ergon, Madrid, pp 145–168

    Google Scholar 

  31. 31.

    Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Suys B, de Beeck LO, Rooman R, Kransfeld S, Heuten H, Goovaerts I, Vrints C, de Wolf D, Matthys D, Manuel-y-Keenoy B (2007) Impact of oxidative stress on the endothelial dysfunction of children and adolescents with type 1 diabetes mellitus: protection by superoxide dismutase? Pediatr Res 62:456–461

    PubMed  CAS  Google Scholar 

  33. 33.

    Tatli MM, Vural H, Koc A, Kosecik M, Atas A (2000) Altered anti-oxidant status and increased lipid peroxidation in marasmic children. Pediatr Int 42:289–292

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Wassmann S, Wassmann K, Nickenig G (2004) Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension 44:381–386

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the collaboration of the parents whose children have participated in this study and we are grateful to Antonio Carrión and Pilar Lillo for their nutritionist work. We thank Michelle Mendez for her help in editing the manuscript

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pilar Codoñer-Franch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Codoñer-Franch, P., Bataller Alberola, A., Domingo Camarasa, J.V. et al. Influence of dietary lipids on the erythrocyte antioxidant status of hypercholesterolaemic children. Eur J Pediatr 168, 321 (2009). https://doi.org/10.1007/s00431-008-0762-6

Download citation

Keywords

  • Antioxidant enzymes
  • Glutathione
  • Hypercholesterolaemia
  • Diet
  • Lipids