Skip to main content
Log in

ACTH-dependent precocious pseudopuberty in an infant with DAX1 gene mutation

  • Original Paper
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

DAX1 gene (Xp21) expression is involved in the development of the hypothalamo-pituitary-gonadal and adrenal axes, and acts as a negative regulator of steroidogenesis. Mutations of this gene determine adrenal hypoplasia congenita (AHC) and hypogonadotropic hypogonadism. We report the case of a 9-month-old boy referred for the study of macrogenitosomia and pubic hair development. He had presented acute adrenal crises in the neonatal period and, later, a clinical picture of peripheral precocious puberty. A mutation in the DAX1 gene was found (Trp291Arg) and a diagnosis of AHC was made. Replacement doses of hydrocortisone (HC) (10 mg/m2/day) failed to produce a feedback inhibition of adrenocorticotropic hormone (ACTH), and testosterone levels remained high. Testosterone and ACTH values normalized after HC was progressively increased to 18 mg/m2/day. In conclusion, peripheral precocious puberty in patients with DAX1 gene mutations appears to be secondary to the stimulus exerted by ACTH on melanocortin receptors in Leydig cells and to the overexpression of testicular steroidogenesis activators by the loss of transcriptional repression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Achermann JC, Silverman BL, Habiby RL, Jameson JL (2000) Presymptomatic diagnosis of X-linked adrenal hypoplasia congenita by analysis of DAX1. J Pediatr 137:878–881

    Article  PubMed  CAS  Google Scholar 

  2. Carrascosa A, Yeste D, Copil A, Gussinyé M (2004) Secular growth changes. Weight, height and body mass index values in infants, children, adolescents and young adults from a Barcelona population. Med Clin (Barc) 123:445–451

    Article  Google Scholar 

  3. de Keyzer Y, Lenne F, Massias JF, Vieau D, Luton JP, Kahn A, Bertagna X (1990) Pituitary-like proopiomelanocortin transcripts in human Leydig cell tumors. J Clin Invest 86:871−877

    Article  PubMed  Google Scholar 

  4. Domenice S, Latronico AC, Brito VN, Arnhold IJ, Kok F, Mendonca BB (2001) Adrenocorticotropin-dependent precocious puberty of testicular origin in a boy with X-linked adrenal hypoplasia congenita due to a novel mutation in the DAX1 gene. J Clin Endocrinol Metab 86:4068–4071

    Article  PubMed  CAS  Google Scholar 

  5. Iyer AK, McCabe ER (2004) Molecular mechanisms of DAX1 action. Mol Genet Metab 83:60–73

    Article  PubMed  CAS  Google Scholar 

  6. Krone N, Riepe FG, Dörr HG, Morlot M, Rudorff KH, Drop SL, Weigel J, Pura M, Kreze A, Boronat M, de Luca F, Tiulpakov A, Partsch CJ, Peter M, Sippell WG (2005) Thirteen novel mutations in the NR0B1 (DAX1) gene as cause of adrenal hypoplasia congenita. Hum Mutat 25:502–503

    Article  PubMed  Google Scholar 

  7. Lehmann SG, Wurtz JM, Renaud JP, Sassone-Corsi P, Lalli E (2003) Structure-function analysis reveals the molecular determinants of the impaired biological function of DAX-1 mutants in AHC patients. Hum Mol Genet 12:1063–1072

    Article  PubMed  CAS  Google Scholar 

  8. Lin L, Gu WX, Ozisik G, To WS, Owen CJ, Jameson JL, Achermann JC (2006) Analysis of DAX1 (NR0B1) and steroidogenic factor-1 (NR5A1) in children and adults with primary adrenal failure: ten years’ experience. J Clin Endocrinol Metab 91:3048–3054

    Article  PubMed  CAS  Google Scholar 

  9. Ludbrook LM, Harley VR (2004) Sex determination: a ‘window’ of DAX1 activity. Trends Endocrinol Metab 15:116–121

    Article  PubMed  CAS  Google Scholar 

  10. Nakae J, Abe S, Tajima T, Shinohara N, Murashita M, Igarashi Y, Kusuda S, Suzuki J, Fujieda K (1997) Three novel mutations and a de novo deletion mutation of the DAX-1 gene in patients with X-linked adrenal hypoplasia congenita. J Clin Endocrinol Metab 82:3835–3841

    Article  PubMed  CAS  Google Scholar 

  11. O’Shaughnessy PJ, Baker PJ, Johnston H (2006) The foetal Leydig cell—differentiation, function and regulation. Int J Androl 29:90–95

    Article  PubMed  CAS  Google Scholar 

  12. Thörnwall M, Dimitriou A, Xu X, Larsson E, Chhajlani V (1997) Immunohistochemical detection of the melanocortin 1 receptor in human testis, ovary and placenta using specific monoclonal antibody. Horm Res 48:215–218

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Miss Christine O’Hara for her valuable help with the English version of the manuscript. This work has been partially supported by grant RCMN (C03/08) from the Instituto de Salud Carlos III, Madrid, Spain. Guiomar Pérez de Nanclares is an FIS Research Scientist and Gustavo Pérez-Nanclares is an FIS Senior Technician supported by the Spanish Ministry of Health (fellowship nos. CP03/0064 and CA05/0158, respectively). This group is funded, in part, by the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, and PI06/0690.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Yeste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeste, D., González-Niño, C., Pérez de Nanclares, G. et al. ACTH-dependent precocious pseudopuberty in an infant with DAX1 gene mutation. Eur J Pediatr 168, 65–69 (2009). https://doi.org/10.1007/s00431-008-0710-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-008-0710-5

Keywords

Navigation