Skip to main content

Advertisement

Log in

Infantile cardiomyopathy caused by the T14709C mutation in the mitochondrial tRNA glutamic acid gene

  • Original Paper
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

A 6-week-old child presented with hypotonia, myopathy, and a rapidly worsening dilated cardiomyopathy with severe atrial and ventricular arrhythmias and pulmonary hypertension, which proved fatal at age 3 months. Biochemical analysis showed a combined deficiency of the enzymatic activities of complexes I and IV and molecular studies identified a T14709C mutation in the mitochondrial tRNA glutamic acid gene. A review of symptomatology in patients with this mutation shows that it mainly presents in childhood or young adults with mild myopathy and diabetes mellitus. Infants with a high, nearly homoplasmic mutant load can present with more severe symptoms including cardiomyopathy. Families with this mitochondrial DNA mutation should be aware that increased mutant load in a subsequent generation may result in severe and often fatal cardiac symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

mtDNA:

mitochondrial DNA

tRNA:

transfer RNA

COX:

cytochrome c oxidase

ATP:

adenosine triphosphate

ADP:

adenosine diphosphate

RFLP:

restriction fragment length polymorphism

PCR:

polymerase chain reaction

PAGE:

polyacrylamide gel electrophoresis

References

  1. Antonicka H, Ogilvie I, Taivassalo T, Anitori RP, Halter RG, Vissing J, Kennaway NG, Shoubridge EA (2003) Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J Biol Chem 278:43081–43088

    Article  PubMed  CAS  Google Scholar 

  2. Barclay AR, Shollier G, Christodoulou J, Shun A, Arbuckle S, Dorney S, Stormon MO (2005) Pulmonary hypertension: a new manifestation of mitochondrial disease. J Inher Metab Dis 28:1081–1089

    Article  PubMed  CAS  Google Scholar 

  3. Choo-Kang ATW, Lynn S, Taylor GA, Daly ME, Sihota SS, Wardell TM, Chinnery PF, Turnbull DM, Walker M (2002) Defining the importance of mitochondrial gene defects in maternally inherited diabetes by sequencing the entire mitochondrial genome. Diabetes 51:2317–2320

    Article  PubMed  CAS  Google Scholar 

  4. Damore ME, Speiser PW, Slonim AE, Newe MI, Shanske S, Xia W, Santorelli FM, DiMauro S (1999) Early onset diabetes mellitus associated with the mitochondrial DNA T14709C point mutation: patient report and literature review. J Pediatr Endocrin Metab 12:207–213

    CAS  Google Scholar 

  5. Hanna MG, Nelson I, Sweeney MG, Cooper JM, Watkins PJ, Morgan-Hughes JA, Harding AE (1995) Congenital encephalomyopathy and adult-onset myopathy and diabetes mellitus: different phenotypic associations of a new heteroplasmic mtDNA tRNA glutamic acid mutation. Am J Hum Genet 56:1026–1033

    PubMed  CAS  Google Scholar 

  6. Hao H, Bonilla E, Manfredi G, DiMauro S, Moraes CT (1995) Segregation patterns of a novel mutation in the mitochondrial tRNA glutamic acid gene associated with myopathy and diabetes mellitus. Am J Hum Genet 56:1017–1025

    PubMed  CAS  Google Scholar 

  7. Holmgren D, Wåhlander H, Eriksson BO, Oldfors A, Holme E, Tulinius M (2003) Cardiomyopathy in children with mitochondrial disease. Eur Heart J 24:280–288

    Article  PubMed  CAS  Google Scholar 

  8. King T, Howard R (1967) Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. In: Estabrook R, Pullman M (eds) Methods in enzymology: oxidation and phosphorylation, vol 10. Academic Press, New York, pp 322–328

    Chapter  Google Scholar 

  9. King T, Howard RL (1967) Preparation and properties of NADH dehydrogenase from cardiac muscle. In: Estabrook R, Pullman M (eds) Methods in enzymology: oxidation and phosphorylation, vol 10. Academic Press, New York, pp 275–294

    Chapter  Google Scholar 

  10. Mancuso M, Ferraris S, Nishigaki Y, Azan G, Mauro A, Sammarco P, Krishna S, Tay SKH, Bonilla E, Romansky SG, Hirano M, DiMauro S (2005) Congenital or late-onset myopathy in patients with the T14709C mtDNA mutation. J Neurol Sci 228:93–97

    Article  PubMed  CAS  Google Scholar 

  11. McFarland R, Schaefer AM, Gardner JL, Lynn S, Hayes CM, Barron MJ, Walker M, Chinnery PF, Taylor RW, Turnbull DM (2004) Familial myopathy: new insights into the T14709C mitochondrial tRNA mutation. Ann Neurol 55:478–484

    Article  PubMed  CAS  Google Scholar 

  12. Meulemans A, Seneca S, Smet J, De Paepe B, Lissens W, Van Coster R, Debeer A, De Meirleir L, Jaeken J (2007) A new family with the mitochondrial tRNAGLU gene mutation m.14709T>C presenting as hydrops fetalis. Eur J Pediatr Neurol 11:17–20

    Article  Google Scholar 

  13. Narbonne H, Paquis-Fluckinger V, Valero R, Heyries L, Pellisier JF, Vialettes B (2004) Gastrointestinal tract symptoms in maternally inherited diabetes and deafness (MIDD). Diabetes Metab 30:61–66

    Article  PubMed  CAS  Google Scholar 

  14. Rigoli L, Prisco F, Caruso RA, Iafusco D, Ursomanno G, Zucarello D, Ingenito N, Rigoli M, Barberi I (2001) Association of the T14709C mutation of mitochondrial DNA with maternally inherited diabetes mellitus and/or deafness in an Italian family. Diabetic Med 18:334–336

    Article  PubMed  CAS  Google Scholar 

  15. Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  PubMed  CAS  Google Scholar 

  16. Schon EA (2006) Appendix. In: DiMauro S, Hirano M, Schon EA (eds.) Mitochondrial medicine. Taylor & Francis, London, pp 329–335

    Google Scholar 

  17. Shanske S, Pancrudo J, Kaufmann P, Engelstad K, Jhung S, Lu J, Naini A, DiMauro S, De Vivo DC (2004) Varying loads of the mitochondrial DNA A3243G mutation in different tissues: implications for diagnosis. Am J Med Genet A 130:134–137

    Article  PubMed  Google Scholar 

  18. Srere P (1969) Citrate synthase. In: Lowenstein J (ed) Methods in enzymology, vol 13. Academic Press, New York, pp 3–11

    Google Scholar 

  19. Vialettes BH, Paquis-Flucklinger V, Pellisier JF, Bendaham D, Narbonne H, Silverstre-Aillaud P, Montfort MF, Righini-Chossegros M, Pouget J, Cozzone PJ, Desnuelle C (1997) Phenotypic expression of diabetes secondary to a T14709C mutation of mitochondrial DNA: comparison with MIDD syndrome (A3243G mutation): a case report. Diabetes Care 20:1731–1737

    Article  PubMed  CAS  Google Scholar 

  20. Wharton DC, Tzagoloff A (1967) Cytochrome c oxidase from beef heart mitochondria. In: Estabrook R, Pullman M (eds) Methods in enzymology, vol 10. Academic Press, New York, pp 245–250

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Eric Shoubridge, Montreal Neurological Institute, Montreal, Canada, for performing the blue native polyacrylamide gel electrophoresis experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan L. K. Van Hove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Hove, J.L.K., Freehauf, C., Miyamoto, S. et al. Infantile cardiomyopathy caused by the T14709C mutation in the mitochondrial tRNA glutamic acid gene. Eur J Pediatr 167, 771–776 (2008). https://doi.org/10.1007/s00431-007-0587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-007-0587-8

Keywords

Navigation