Skip to main content
Log in

Population clinical pharmacology of children: general principles

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript



Population modelling using mixed-effects models provides a means to study variability in drug responses among individuals representative of those for whom the drug will be used clinically.


The advantages of these models in paediatric studies are that they can be used to analyse sparse data, sampling times are not crucial and can be fitted around clinical procedures and individuals with missing data may still be included in the analysis. The introduction of explanatory covariates explains the predictable part of the between-individual variability. Simulations using parameter estimates and their variability can be used to investigate large numbers of children – many more than is possible in studies dealing with real children – for a fraction of the cost, which is an advantage when developing clinical trials. Paediatric population modelling has expanded greatly in the past decade and is now a routine procedure during the development and investigation of drugs. Children have benefitted and will continue to benefit from this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others





absorption rate constant


natural logarithm


Nonlinear mixed-effects model






absorption half time


therapeutic drug monitoring


volume of distribution


  1. Aarons L, Karlsson MO, Mentre F, Rombout F, Steimer JL, van Peer A, Experts CB (2001) Role of modelling and simulation in Phase I drug development. Eur J Pharm Sci 13:115–122

    Article  PubMed  CAS  Google Scholar 

  2. Allegaert K, Anderson BJ, Cossey V, Holford NH (2006) Limited predictability of amikacin clearance in extreme premature neonates at birth. Br J Clin Pharmacol 61:39–48

    Article  PubMed  CAS  Google Scholar 

  3. Anderson BJ, Hansen TG (2004) Getting the best from pediatric pharmacokinetic data. Paediatr Anaesth 14:713–715

    Article  PubMed  Google Scholar 

  4. Anderson BJ, Holford NHG, Armishaw JC, Aicken R (1999) Predicting concentrations in children presenting with acetaminophen overdose. J Pediatr 135:290–295

    Article  PubMed  CAS  Google Scholar 

  5. Anderson BJ, Pons G, Autret-Leca E, Allegaert K, Boccard E (2005) Pediatric intravenous paracetamol (propacetamol) pharmacokinetics: a population analysis. Paediatr Anaesth 15:282–292

    Article  PubMed  Google Scholar 

  6. Anderson BJ, van Lingen RA, Hansen TG, Lin YC, Holford NH (2002) Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology 96:1336–1345

    Article  PubMed  CAS  Google Scholar 

  7. Anderson BJ, Woollard GA, Holford NH (2000) A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol 50:125–134

    Article  PubMed  CAS  Google Scholar 

  8. Berde C (1992) Convulsions associated with pediatric regional anesthesia. Anesth Analg 75:164–166

    Article  PubMed  CAS  Google Scholar 

  9. Bonate PL (1999) The effect of collinearity on parameter estimates in nonlinear mixed effect models. Pharm Res 16:709–717

    Article  PubMed  CAS  Google Scholar 

  10. Bond GR, Krenzelok EP, Normann SA, Tendler JD, Morris Kukoski CL, McCoy DJ, Thompson MW, McCarthy T, Roblez J, Taylor C et al (1994) Acetaminophen ingestion in childhood-cost and relative risk of alternative referral strategies. J Toxicol Clin Toxicol 32:513–525

    Article  PubMed  CAS  Google Scholar 

  11. Borowitz DS, Grand RJ, Durie PR (1995) Use of pancreatic enzyme supplements for patients with cystic fibrosis in the context of fibrosing colonopathy. Consensus Committee. J Pediatr 127:681–684

    Article  PubMed  CAS  Google Scholar 

  12. Burns LE, Hodgman JE (1959) Fatal circulatory collapse in premature infants receiving chloramphenicol. N Engl J Med 261:1318

    Article  PubMed  CAS  Google Scholar 

  13. D’Argenio D, Schumitzky A (1997) ADAPT II user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

  14. D’Argenio DZ (1990) Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math Biosci 99:105–118

    Article  PubMed  CAS  Google Scholar 

  15. Duffull S, Waterhouse T, Eccleston J (2005) Some considerations on the design of population pharmacokinetic studies. J Pharmacokinet Pharmacodyn 32:441–457

    Article  PubMed  Google Scholar 

  16. Duffull SB, Kirkpatrick CM, Green B, Holford NH (2005) Analysis of population pharmacokinetic data using NONMEM and WinBUGS. J Biopharm Stat 15:53–73

    Article  PubMed  Google Scholar 

  17. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54–77

    Article  Google Scholar 

  18. Gill D (2004) Ethical principles and operational guidelines for good clinical practice in paediatric research. Recommendations of the Ethics Working Group of the Confederation of European Specialists in Paediatrics (CESP). Eur J Pediatr 163:53–57

    Article  PubMed  Google Scholar 

  19. Grasela TH Jr, Donn SM (1985) Neonatal population pharmacokinetics of phenobarbital derived from routine clinical data. Dev Pharmacol Ther 8:374–383

    PubMed  Google Scholar 

  20. Grasela TH, Sheiner LB, Rambeck B, Boenigk HE, Dunlop A, Mullen PW, Wadsworth J, Richens A, Ishizaki T, Chiba K et al (1983) Steady-state pharmacokinetics of phenytoin from routinely collected patient data. Clin Pharmacokinet 8:355–364

    Article  PubMed  CAS  Google Scholar 

  21. Grimsley C, Thomson AH (1999) Pharmacokinetics and dose requirements of vancomycin in neonates. Arch Dis Child Fetal Neonatal Ed 81:F221–F227

    PubMed  CAS  Google Scholar 

  22. Holford NHG (2003) Input-ouput models. In: Kimko HC, Duffull SB (eds) Simulation for designing clinical trials. A pharmacokinetic-pharmacodynamic modeling perspective. Marcel Dekker, New York, pp 17–30

    Google Scholar 

  23. Hussein Z, Eaves CJ, Hutchinson DB, Canfield CJ (1996) Population pharmacokinetics of proguanil in patients with acute P. falciparum malaria after combined therapy with atovaquone. Br J Clin Pharmacol 42:589–597

    Article  PubMed  CAS  Google Scholar 

  24. Kataria BK, Ved SA, Nicodemus HF, Hoy GR, Lea D, Dubois MY, Mandema JW, Shafer SL (1994) The pharmacokinetics of propofol in children using three different data analysis approaches [see comments]. Anesthesiology 80:104–122

    Article  PubMed  CAS  Google Scholar 

  25. Kauffman RE (1991) Fentanyl, fads, and folly: who will adopt the therapeutic orphans? J Pediatr 119:588–589

    Article  PubMed  CAS  Google Scholar 

  26. Meibohm B, Derendorf H (1997) Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther 35:401–413

    PubMed  CAS  Google Scholar 

  27. Meibohm B, Laer S, Panetta JC, Barrett JS (2005) Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J 7:E475–E487

    Article  PubMed  Google Scholar 

  28. Muller C, Kremer W, Harlfinger S, Doroshyenko O, Jetter A, Hering F, Hunseler C, Roth B, Theisohn M (2006) Pharmacokinetics of piritramide in newborns, infants and young children in intensive care units. Eur J Pediatr 165:229–239

    Article  PubMed  CAS  Google Scholar 

  29. Olkkola KT, Aranko K, Luurila H, Hiller A, Saarnivaara L, Himberg JJ, Neuvonen PJ (1993) A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 53:298–305

    Article  PubMed  CAS  Google Scholar 

  30. Pariente-Khayat A, Rey E, Gendrel D, Vauzelle-Kervroedan F, Cremier O, d’Athis P, Badoual J, Olive G, Pons G (1997) Isoniazid acetylation metabolic ratio during maturation in children. Clin Pharmacol Ther 62:377–383

    Article  PubMed  CAS  Google Scholar 

  31. Peck CC, Beal SL, Sheiner LB, Nichols AI (1984) Extended least squares nonlinear regression: a possible solution to the “choice of weights” problem in analysis of individual pharmacokinetic parameters. J Pharmacokinet Biopharm 12:545–557

    Article  PubMed  CAS  Google Scholar 

  32. Peck CC, Sheiner LB, Nichols AI (1984) The problem of choosing weights in nonlinear regression analysis of pharmacokinetic data. Drug Metab Rev 15:133–148

    Article  PubMed  CAS  Google Scholar 

  33. Pillai GC, Mentre F, Steimer JL (2005) Non-linear mixed effects modeling - from methodology and software development to driving implementation in drug development science. J Pharmacokinet Pharmacodyn 32:161–183

    Article  PubMed  CAS  Google Scholar 

  34. Ramet J (2005) What the paediatricians need-the launch of paediatric research in Europe. Eur J Pediatr 164:263–265

    Article  PubMed  Google Scholar 

  35. Retout S, Mentre F (2003) Optimization of individual and population designs using Splus. J Pharmacokinet Pharmacodyn 30:417–443

    Article  PubMed  Google Scholar 

  36. Ribbing J, Jonsson EN (2004) Power, selection bias and predictive performance of the population pharmacokinetic covariate model. J Pharmacokinet Pharmacodyn 31:109–134

    Article  PubMed  CAS  Google Scholar 

  37. Rombout F, Aarons L, Karlsson M, Man A, Mentre F, Nygren P, Racine A, Schaefer H, Steimer JL, Troconiz I, van Peer A (2004) Modelling and simulation in the development and use of anti-cancer agents: an underused tool? J Pharmacokinet Pharmacodyn 31:419–440

    Article  PubMed  Google Scholar 

  38. Saint-Raymond A, Seigneuret N (2005) Medicines for children: time for Europe to act. Paediatr Perinatal Drug Ther 6:142–146

    Google Scholar 

  39. Sheiner LB, Beal SL (1980) Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 8:553–571

    Article  PubMed  CAS  Google Scholar 

  40. Sheiner LB, Beal SL (1981) Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experimental pharmacokinetic data. J Pharmacokinet Biopharm 9:635–651

    Article  PubMed  CAS  Google Scholar 

  41. Sheiner LB, Beal SL (1983) Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 11:303–319

    Article  PubMed  CAS  Google Scholar 

  42. Sheiner LB, Rosenburg B, Marathe VV (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm 5:445–479

    Article  PubMed  CAS  Google Scholar 

  43. Taussig HB (1962) A study of the German outbreak of phocomelia: the thalidomide syndrome. JAMA 180:1106–1114

    PubMed  CAS  Google Scholar 

  44. Tett SE, NHG H, McLachlan AJ (1998) Population pharmacokinetics and pharmacodynamics: an underutilised resource. DIA Journal 32:693–710

    Google Scholar 

  45. van der Marel CD, Anderson BJ, Pluim MA, de Jong TH, Gonzalez A, Tibboel D (2003) Acetaminophen in cerebrospinal fluid in children. Eur J Clin Pharmacol 59:297–302

    Article  PubMed  CAS  Google Scholar 

  46. Whiting B, Kelman AW, Grevel J (1986) Population pharmacokinetics. Theory and clinical application. [Review]. Clin Pharmacokinet 11:387–401

    Article  PubMed  CAS  Google Scholar 

  47. Wright PM (1998) Population based pharmacokinetic analysis: why do we need it; what is it; and what has it told us about anaesthetics? Br J Anaesth 80:488–501

    PubMed  CAS  Google Scholar 

  48. Yano Y, Beal SL, Sheiner LB (2001) Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn 28:171–192

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Brian J. Anderson.

Additional information

Financial Support: The clinical research of K. Allegaert is supported by the Fund for Scientific Research, Flanders (Belgium) with a Clinical Doctoral Grant (A 6/5-KV-G 1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, B.J., Allegaert, K. & Holford, N.H.G. Population clinical pharmacology of children: general principles. Eur J Pediatr 165, 741–746 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: