Skip to main content

Advertisement

Log in

Gene biomarkers and classifiers for various subtypes of HTLV-1-caused ATLL cancer identified by a combination of differential gene co‑expression and support vector machine algorithms

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Adult T-cell leukemia/lymphoma (ATLL) is pathogen-caused cancer that is progressed after the infection by human T-cell leukemia virus type 1. Four significant subtypes comprising acute, lymphoma, chronic, and smoldering have been identified for this cancer. However, there are no trustworthy prognostic biomarkers for these subtypes. We utilized a combination of two powerful network-based and machine-learning algorithms including differential co-expressed genes (DiffCoEx) and support vector machine-recursive feature elimination with cross-validation (SVM-RFECV) methods to categorize disparate ATLL subtypes from asymptomatic carriers (ACs). The results disclosed the significant involvement of CBX6, CNKSR1, and MAX in chronic, MYH10 and P2RY1 in acute, C22orf46 and HNRNPA0 in smoldering subtypes. These genes also can classify each ATLL subtype from AC carriers. The integration of the results of two powerful algorithms led to the identification of reliable gene classifiers and biomarkers for diverse ATLL subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this article. The SVM-RFECV code was deposited in https://github.com/Mohadesehzarei/SVM-RFECV.

References

  1. Ashrafi F, Ghezeldasht SA, Ghobadi MZ (2021) Identification of joint gene players implicated in the pathogenesis of HTLV-1 and BLV through a comprehensive system biology analysis. Microb Pathog 160:105153

    Article  CAS  PubMed  Google Scholar 

  2. Hajj HE, Nasr R, Kfoury Y, Dassouki Z, Nasser R, Kchour G et al (2012) Animal models on HTLV-1 and related viruses: what did we learn? Front Microbiol 3:333

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oshiro A, Tagawa H, Ohshima K, Karube K, Uike N, Tashiro Y et al (2006) Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood 107(11):4500–4507

    Article  CAS  PubMed  Google Scholar 

  4. Shimoyama M (1985) Adult T-cell leukemia/lymphoma and its clinical subtypes from the viewpoints of viral etiology. Human T-Cell Leukemia Virus. Springer, pp 113–125

  5. Ghobadi MZ, Afsaneh E, Emamzadeh R, Soroush M (2023) Potential miRNA-gene interactions determining progression of various ATLL cancer subtypes after infection by HTLV-1 oncovirus. BMC Med Genomics 16(1):62. https://doi.org/10.1186/s12920-023-01492-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghobadi MZ, Emamzadeh R, Afsaneh E (2022) Exploration of mRNAs and miRNA classifiers for various ATLL cancer subtypes using machine learning. BMC Cancer 22(1):1–8

    Article  Google Scholar 

  7. Tesson BM, Breitling R, Jansen RC (2010) DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinformatics 11(1):1–9

    Article  Google Scholar 

  8. Chamasemani FF, Singh YP. Multi-class support vector machine (SVM) classifiers—an application in hypothyroid detection and classification. 2011 sixth international conference on bio-inspired computing: theories and applications: IEEE; 2011. p. 351–6.

  9. Ghobadi MZ, Emamzadeh R, Mozhgani S-H (2021) Deciphering microRNA-mRNA regulatory network in adult T-cell leukemia/lymphoma; the battle between oncogenes and anti-oncogenes. PLoS One 16(2):e0247713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zarei Ghobadi M, Emamzadeh R, Teymoori-Rad M, Mozhgani S-H (2021) Decoding pathogenesis factors involved in the progression of ATLL or HAM/TSP after infection by HTLV-1 through a systems virology study. Virol J 18(1):175. https://doi.org/10.1186/s12985-021-01643-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai L, Fritz D, Stefanovic L, Stefanovic B (2010) Nonmuscle myosin-dependent synthesis of type I collagen. J Mol Biol 401(4):564–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Betapudi V (2010) Myosin II motor proteins with different functions determine the fate of lamellipodia extension during cell spreading. PLoS One 5(1):e8560

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Yang Q, Cheng Y, Gao M, Kuang L, Wang C (2018) Myosin heavy chain 10 (MYH10) gene silencing reduces cell migration and invasion in the glioma cell lines U251, T98G, and SHG44 by inhibiting the Wnt/β-catenin pathway. Med Sci Monit 24:9110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jin J, Daniel JL, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273(4):2030–2034. https://doi.org/10.1074/jbc.273.4.2030

    Article  CAS  PubMed  Google Scholar 

  15. Léon C, Hechler B, Vial C, Leray C, Cazenave JP, Gachet C (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett 403(1):26–30. https://doi.org/10.1016/s0014-5793(97)00022-7

    Article  PubMed  Google Scholar 

  16. Gremmel T, Yanachkov IB, Yanachkova MI, Wright GE, Wider J, Undyala VV et al (2016) Synergistic inhibition of both P2Y1 and P2Y12 adenosine diphosphate receptors as novel approach to rapidly attenuate platelet-mediated thrombosis. Arterioscler Thromb Vasc Biol 36(3):501–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yanachkov IB, Chang H, Yanachkova MI, Dix EJ, Berny-Lang MA, Gremmel T et al (2016) New highly active antiplatelet agents with dual specificity for platelet P2Y1 and P2Y12 adenosine diphosphate receptors. Eur J Med Chem 107:204–218

    Article  CAS  PubMed  Google Scholar 

  18. Tan Y, Zhang T, Zhou L, Liu S, Liang C (2019) MiR-34b-3p represses the multidrug-chemoresistance of bladder cancer cells by regulating the CCND2 and P2RY1 genes. Med Sci Monit 25:1323

    Article  CAS  PubMed Central  Google Scholar 

  19. Hua Y, Liu Y, Li L, Liu G (2023) Activation of hypermethylated P2RY1 mitigates gastric cancer by promoting apoptosis and inhibiting proliferation. Open Life Sci 18(1):20220078

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sellers LA, Simon J, Lundahl TS, Cousens DJ, Humphrey PP, Barnard EA (2001) Adenosine nucleotides acting at the human P2Y1 receptor stimulate mitogen-activated protein kinases and induce apoptosis. J Biol Chem 276(19):16379–16390

    Article  CAS  PubMed  Google Scholar 

  21. Deng H, Guan X, Gong L, Zeng J, Zhang H, Chen MY et al (2019) CBX6 is negatively regulated by EZH2 and plays a potential tumor suppressor role in breast cancer. Sci Rep 9(1):1–13

    Google Scholar 

  22. Wang J, He H, Jiang Q, Wang Y, Jia S (2020) CBX6 promotes HCC metastasis via transcription factors snail/zeb1-mediated EMT mechanism. OncoTargets therapy 13:12489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Comino-Méndez I, Leandro-García LJ, Montoya G, Inglada-Pérez L, de Cubas AA, Currás-Freixes M et al (2015) Functional and in silico assessment of MAX variants of unknown significance. J Mol Med 93(11):1247–1255

    Article  PubMed  Google Scholar 

  24. Ren Y, Bi C, Zhao X, Lwin T, Wang C, Yuan J et al (2018) PLK1 stabilizes a MYC-dependent kinase network in aggressive B cell lymphomas. J Clin Investig 128(12):5517–5530

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mathsyaraja H, Freie B, Cheng P-F, Babaeva E, Catchpole JT, Janssens D et al (2019) Max deletion destabilizes MYC protein and abrogates Eµ-Myc lymphomagenesis. Genes Development 33(17–18):1252–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Augert A, Mathsyaraja H, Ibrahim AH, Freie B, Geuenich MJ, Cheng P-F et al (2020) MAX functions as a tumor suppressor and rewires metabolism in small cell lung cancer. Cancer Cell 38(1):97–114 (e7)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nishiyama K, Maekawa M, Nakagita T, Nakayama J, Kiyoi T, Chosei M et al (2021) CNKSR1 serves as a scaffold to activate an EGFR phosphatase via exclusive interaction with RhoB-GTP. Life Sci Alliance 4(9):e202101095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Liu X, Yue M, Liu Z, Zhang Y, Ma Y et al (2021) Identification of hub genes in bladder cancer based on weighted gene co-expression network analysis from TCGA database. Cancer Reports 5(9):e1557

    PubMed  PubMed Central  Google Scholar 

  29. Li W, Liu R, Wei D, Zhang W, Zhang H, Huang W et al (2020) Circular RNA circ-CCAC1 facilitates adrenocortical carcinoma cell proliferation, migration, and invasion through regulating the miR-514a-5p/C22orf46 axis. Biomed Res Int 2020:3501451. https://doi.org/10.1155/2020/3501451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wei C, Peng B, Han Y, Chen WV, Rother J, Tomlinson GE et al (2015) Mutations of HNRNPA0 and WIF1 predispose members of a large family to multiple cancers. Fam Cancer 14(2):297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Konishi H, Fujiya M, Kashima S, Sakatani A, Dokoshi T, Ando K et al (2020) A tumor-specific modulation of heterogeneous ribonucleoprotein A0 promotes excessive mitosis and growth in colorectal cancer cells. Cell Death Dis 11(4):1–16

    Article  Google Scholar 

  32. Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A et al (2012) Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κB pathway in adult T cell leukemia and other cancers. Cancer Cell Int 21(1):121–135

    Article  CAS  Google Scholar 

  33. Fujikawa D, Nakagawa S, Hori M, Kurokawa N, Soejima A, Nakano K et al (2016) Polycomb-dependent epigenetic landscape in adult T-cell leukemia. Blood J Am Soc Hematol 127(14):1790–1802

    CAS  Google Scholar 

  34. Tattermusch S, Skinner JA, Chaussabel D, Banchereau J, Berry MP, McNab FW et al (2012) Systems biology approaches reveal a specific interferon-inducible signature in HTLV-1 associated myelopathy. PLoS Pathog 8(1):e1002480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zarei Ghobadi M, Emamzadeh R (2022) Integration of gene co-expression analysis and multi-class SVM specifies the functional players involved in determining the fate of HTLV-1 infection toward the development of cancer (ATLL) or neurological disorder (HAM/TSP). PLoS One 17(1):e0262739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9(1):559

    Article  Google Scholar 

  37. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57(1):289–300

    Google Scholar 

  38. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids Res 37(suppl_2):W305–W311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Afsaneh E, Sharifdini A, Ghazzaghi H, Ghobadi MZ (2022) Recent applications of machine learning and deep learning models in the prediction, diagnosis, and management of diabetes: a comprehensive review. Diabetol Metab Syndrome 14(1):1–39

    Article  Google Scholar 

  40. Sanz H, Valim C, Vegas E, Oller JM, Reverter F (2018) SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinform 19(1):1–18

    Article  Google Scholar 

  41. Zarei Ghobadi M, Emamzadeh R, Teymoori-Rad M, Afsaneh E (2022) Exploration of blood-derived coding and non-coding RNA diagnostic immunological panels for COVID-19 through a co-expressed-based machine learning procedure. Front Immunol 13:1001070

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MZG and EA performed bioinformatics and statistical analysis. MZG interpreted the results and wrote the manuscript. EA revised the manuscript. RE supervised the project. All authors approved the final manuscript.

Corresponding authors

Correspondence to Mohadeseh Zarei Ghobadi or Rahman Emamzadeh.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest and have never published the manuscript.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Edited by Matthias J. Reddehase.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary data file 1.

The gene lists in the specific modules for each ATLL subtype. (XLSX 241 KB)

Supplementary data file 2.

The pathway enrichment analysis of the specific modules. (XLSX 12 KB)

Supplementary data file 3.

The unique DEGs considering p. adj. value <0.05 for each ATLL subtype (XLSX 33 KB)

Supplementary data file 4.

The shared genes between unique DEGs and the genes in each specific DiffCoexGMs of each subtype (XLSX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei Ghobadi, M., Afsaneh, E. & Emamzadeh, R. Gene biomarkers and classifiers for various subtypes of HTLV-1-caused ATLL cancer identified by a combination of differential gene co‑expression and support vector machine algorithms. Med Microbiol Immunol 212, 263–270 (2023). https://doi.org/10.1007/s00430-023-00767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-023-00767-8

Keywords

Navigation