Skip to main content

Advertisement

Log in

Comparative in vitro activity of bacteriophage endolysin HY-133 against Staphylococcus aureus attached to vascular graft surface

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Novel strategies are needed for combating Staphylococcus aureus biofilm in vascular graft infections. We investigated the in vitro activity of bacteriophage endolysin HY-133, daptomycin and rifampin against S. aureus attached to vascular graft surface. Daptomycin showed rapid bactericidal effect on surface-associated S. aureus, while the activity of HY-133 on graft surface-adherent cells was moderate and rifampin did not achieve bactericidal effect. Even in the highest concentrations, all antimicrobials used failed in a complete eradication of the surface-adherent bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bisdas T, Beckmann E, Marsch G, Burgwitz K, Wilhelmi M, Kuehn C, Haverich A, Teebken OE (2012) Prevention of vascular graft infections with antibiotic graft impregnation prior to implantation. In vitro comparison between daptomycin, rifampin and nebacetin. Eur J Vasc Endovasc Surg 43:448–456

    Article  CAS  Google Scholar 

  2. Wilson WR, Bower TC, Creager MA, Amin-Hanjani S, O’gara PT, Lockhart PB, Darouiche RO, Ramlawi B, Derdeyn CP, Bolger AF, Levison ME, Taubert KA, Baltimore RS, Baddour LM (2016) Vascular graft infections, mycotic aneurysms, and endovascular infections: a scientific statement from the american heart association. Circulation 134:E412–E460

    PubMed  Google Scholar 

  3. Elens M, Dusoruth M, Astarci P, Mastrobuoni S, Bosiers MJ, Nardella J, Lacroix V, Possoz J, Verhelst R (2018) Management and outcome of prosthetic vascular graft infections: a single center experience. Vasc Endovasc Surg 52:181–187

    Article  Google Scholar 

  4. Ratliff CR, Strider D, Flohr T, Moses D, Rovnyak V, Armatas J, Johnson J, Okerlund A, Baldwin M, Lawson M, Fuhrmeister S, Tracci MC, Upchurch GR, Cherry KJ (2017) Vascular graft infection: incidence and potential risk factors. J Wound Ostomy Cont Nurs 44:524–527

    Article  Google Scholar 

  5. Chaufour X, Gaudric J, Goueffic Y, Khodja RH, Feugier P, Malikov S, Beraud G, Ricco JB (2017) A multicenter experience with infected abdominal aortic endograft explantation. J Vasc Surg 65:372–380

    Article  Google Scholar 

  6. Ott E, Bange FC, Sohr D, Teebken O, Mattner F (2013) Risk factors associated with surgical site infections following vascular surgery at a German university hospital. Epidemiol Infect 141:1207–1213

    Article  CAS  Google Scholar 

  7. Becker K, Heilmann C, Peters G (2014) Coagulase-negative staphylococci. Clin Microbiol Rev 27:870–926

    Article  CAS  Google Scholar 

  8. Hussain M, Steinbacher T, Peters G, Heilmann C, Becker K (2015) The adhesive properties of the Staphylococcus lugdunensis multifunctional autolysin Atll and its role in biofilm formation and internalization. Int J Med Microbiol 305:129–139

    Article  CAS  Google Scholar 

  9. Van De Vyver H, Bovenkamp PR, Hoerr V, Schwegmann K, Tuchscherr L, Niemann S, Kursawe L, Grosse C, Moter A, Hansen U, Neugebauer U, Kuhlmann MT, Peters G, Hermann S, Löffler B (2017) A novel mouse model of Staphylococcus aureus vascular graft infection: noninvasive imaging of biofilm development in vivo. Am J Pathol 187:268–279

    Article  Google Scholar 

  10. Macia MD, Rojo-Molinero E, Oliver A (2014) Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 20:981–990

    Article  CAS  Google Scholar 

  11. Idelevich EA, Schaumburg F, Knaack D, Scherzinger AS, Mutter W, Peters G, Peschel A, Becker K (2016) The recombinant bacteriophage endolysin HY-133 exhibits in vitro activity against different african clonal lineages of the Staphylococcus aureus complex, including Staphylococcus schweitzeri. Antimicrob Agents Chemother 60:2551–2553

    Article  CAS  Google Scholar 

  12. Mitkowski P, Jagielska E, Nowak E, Bujnicki JM, Stefaniak F, Niedziałek D, Bochtler M, Sabała I (2019) Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep 9(1):5965. https://doi.org/10.1038/s41598-019-42435-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tossavainen H, Raulinaitis V, Kauppinen L, Pentikäinen U, Maaheimo H, Permi P (2018) Structural and functional insights into lysostaphin-substrate interaction. Front Mol Bio Sci. https://doi.org/10.3389/fmolb.2018.00060

    Article  Google Scholar 

  14. Smith K, Perez A, Ramage G, Gemmell CG, Lang S (2009) Comparison of biofilm-associated cell survival following in vitro exposure of meticillin-resistant Staphylococcus aureus biofilms to the antibiotics clindamycin, daptomycin, linezolid, tigecycline and vancomycin. Int J Antimicrob Agents 33:374–378

    Article  CAS  Google Scholar 

  15. Herten M, Idelevich EA, Sielker S, Becker K, Scherzinger AS, Osada N, Torsello GB, Bisdas T (2017) Vascular graft impregnation with antibiotics: the influence of high concentrations of rifampin, vancomycin, daptomycin, and bacteriophage endolysin HY-133 on viability of vascular cells. Med Sci Monit Basic Res 23:250–257

    Article  Google Scholar 

  16. Lew W, Moore W (2011) Antibiotic-impregnated grafts for aortic reconstruction. Semin Vasc Surg 24:211–219

    Article  Google Scholar 

  17. Escobar GA, Eliason JL, Hurie J, Arya S, Rectenwald JE, Coleman DM (2014) Rifampin soaking dacron-based endografts for implantation in infected aortic aneurysms–new application of a time-tested principle. Ann Vasc Surg 28:744–748

    Article  Google Scholar 

  18. Torsello G, Sandmann W, Gehrt A, Jungblut RM (1993) In situ replacement of infected vascular prostheses with rifampin-soaked vascular grafts: early results. J Vasc Surg 17:768–773

    Article  CAS  Google Scholar 

  19. Cirioni O, Mocchegiani F, Ghiselli R, Silvestri C, Gabrielli E, Marchionni E, Orlando F, Nicolini D, Risaliti A, Giacometti A (2010) Daptomycin and rifampin alone and in combination prevent vascular graft biofilm formation and emergence of antibiotic resistance in a subcutaneous rat pouch model of staphylococcal infection. Eur J Vasc Endovasc Surg 40:817–822

    Article  CAS  Google Scholar 

  20. Garrison JR Jr, Henke PK, Smith KR, Brittian KR, Lam TM, Peyton JC, Bergamini TM (1997) In vitro and in vivo effects of rifampin on Staphylococcus epidermidis graft infections. ASAIO J 43:8–12

    Article  CAS  Google Scholar 

  21. Edmiston CE Jr, Goheen MP, Seabrook GR, Johnson CP, Lewis BD, Brown KR, Towne JB (2006) Impact of selective antimicrobial agents on staphylococcal adherence to biomedical devices. Am J Surg 192:344–354

    Article  CAS  Google Scholar 

  22. Herten M, Bisdas T, Knaack D, Becker K, Osada N, Torsello GB, Idelevich EA (2017) Rapid in vitro quantification of S. aureus biofilms on vascular graft surfaces. Front Microbiol 8:2333

    Article  Google Scholar 

  23. CLSI (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, M07-A10, 10th edn. Clinical Laboratory Standards Institute, Wayne

    Google Scholar 

  24. CLSI (2017) Performance standards for antimicrobial susceptibility testing; M100-S27, 27th edn. Clinical Laboratory Standards Institute, Wayne

    Google Scholar 

  25. NCCLS (1999) Methods for determining bactericidal activity of antimicrobial agents; approved guideline. M26-A. National Committee for Clinical Laboratory Standards, Wayne

    Google Scholar 

  26. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    Article  CAS  Google Scholar 

  27. Knaack D, Idelevich EA, Schleimer N, Molinaro S, Kriegeskorte A, Peters G, Becker K (2018) Bactericidal activity of bacteriophage endolysin HY-133 against Staphylococcus aureus in comparison to other antibiotics as determined by minimum bactericidal concentrations and time-kill analysis. Diagn Microbiol Infect Dis. https://doi.org/10.1016/j.diagmicrobio.2018.11.005

    Article  PubMed  Google Scholar 

  28. Sharma U, Vipra A, Channabasappa S (2018) Phage-derived lysins as potential agents for eradicating biofilms and persisters. Drug Discov Today 23:848–856

    Article  CAS  Google Scholar 

  29. Mihailescu R, Furustrand TU, Corvec S, Oliva A, Betrisey B, Borens O, Trampuz A (2014) High activity of fosfomycin and rifampin against methicillin-resistant Staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother 58:2547–2553

    Article  Google Scholar 

  30. Saginur R, Stdenis M, Ferris W, Aaron SD, Chan F, Lee C, Ramotar K (2006) Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob Agents Chemother 50:55–61

    Article  CAS  Google Scholar 

  31. Reiter KC, Sambrano GE, Villa B, Paim TG, de Oliveira CF, d’Azevedo PA (2012) Rifampicin fails to eradicate mature biofilm formed by methicillin-resistant Staphylococcus aureus. Rev Soc Bras Med Trop 45:471–474

    Article  Google Scholar 

  32. Siala W, Rodriguez-Villalobos H, Fernandes P, Tulkens PM, Van Bambeke F (2018) Activities of combinations of antistaphylococcal antibiotics with fusidic acid against staphylococcal biofilms in in vitro static and dynamic models. Antimicrob Agents Chemother 62:e00598-18

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Damayanti Kaiser for expert technical assistance and Ulrike Keller (Institute of Medical Physics and Biophysics, University of Münster) for support with the SEM.

Funding

This research was supported by the fund: “Innovative Medical Research” from Medical School of the University of Münster (ID 111317) and partly by the BMBF-DZIF (German Center for Infection Research, TTU 08.807 HAARBI, 8037808809 and 8037808907). Vascular graft material was provided by B. Braun, Melsungen, Germany (Uni-Graft® K DV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Herten.

Ethics declarations

Conflict of interest

The author declares that they have no competing interests.

Additional information

Edited by Volkhard A. J. Kempf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

430_2019_638_MOESM1_ESM.jpg

Figure S1 Killing kinetics of antimicrobials against vascular graft surface-adherent S. aureus SH1000 after 4-h and 18-h incubation; quantified by the ATP measurement (JPG 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idelevich, E.A., Knaack, D., Nugroho, N.T. et al. Comparative in vitro activity of bacteriophage endolysin HY-133 against Staphylococcus aureus attached to vascular graft surface. Med Microbiol Immunol 209, 51–57 (2020). https://doi.org/10.1007/s00430-019-00638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-019-00638-1

Keywords

Navigation