CD4 T cells are required for maintenance of CD8 TRM cells and virus control in the brain of MCMV-infected newborn mice

Abstract

Cytomegalovirus (CMV) infection is a significant public health problem. Congenital CMV infection is a leading infectious cause of long-term neurodevelopmental sequelae, including mental retardation and sensorineural hearing loss. Immune protection against mouse cytomegalovirus (MCMV) is primarily mediated by NK cells and CD8+ T cells, while CD4+ T cells are not needed for control of MCMV in majority of organs in immunocompetent adult mice. Here, we set out to determine the role of CD4+ T cells upon MCMV infection of newborn mice. We provide evidence that CD4+ T cells are essential for clearance of MCMV infection in brain of neonatal mice and for prevention of recurrence of latent MCMV. In addition, we provide evidence that CD4+ T cells are required for induction and maintenance of tissue-resident memory CD8+ T cells in the brain of mice perinatally infected with MCMV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Reddehase MJ, Lemmermann NAW (2018) Mouse model of cytomegalovirus disease and immunotherapy in the immunocompromised host: predictions for medical translation that survived the “Test of Time”. Viruses 10(12):693. https://doi.org/10.3390/v10120693

    CAS  Article  PubMed Central  Google Scholar 

  2. 2.

    Krmpotic A, Bubic I, Polic B, Lucin P, Jonjic S (2003) Pathogenesis of murine cytomegalovirus infection. Microbes Infect 5(13):1263–1277

    CAS  Article  Google Scholar 

  3. 3.

    Reddehase MJ, Mutter W, Münch K, Bühring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61(10):3102–3108

    CAS  Article  Google Scholar 

  4. 4.

    Jonjić S, Mutter W, Weiland F, Reddehase MJ, Koszinowski UH (1989) Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J Exp Med 169(4):1199–1212

    Article  Google Scholar 

  5. 5.

    Walton SM, Mandaric S, Torti N, Zimmermann A, Hengel H, Oxenius A (2011) Absence of cross-presenting cells in the salivary gland and viral immune evasion confine cytomegalovirus immune control to effector CD4 T cells. PLoS Pathog 7(8):e1002214. https://doi.org/10.1371/journal.ppat.1002214

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Lucin P, Pavic I, Polic B, Jonjic S, Koszinowski UH (1992) Gamma interferon-dependent clearance of cytomegalovirus infection in salivary glands. J Virol 66(4):1977–1984

    CAS  Article  Google Scholar 

  7. 7.

    Reddehase MJ, Jonjic S, Weiland F, Mutter W, Koszinowski UH (1988) Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T lymphocytes derived from latently infected donors. J Virol 62(3):1061–1065

    CAS  Article  Google Scholar 

  8. 8.

    Boppana SB, Ross SA, Fowler KB (2013) Congenital cytomegalovirus infection: clinical outcome. Clin Infect Dis 57(Suppl 4):S178–S181. https://doi.org/10.1093/cid/cit629

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Slavuljica I, Kveštak D, Huszthy PC, Kosmac K, Britt WJ, Jonjić S (2015) Immunobiology of congenital cytomegalovirus infection of the central nervous system—the murine cytomegalovirus model. Cell Mol Immunol 12(2):180–191. https://doi.org/10.1038/cmi.2014.51

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Cekinovic D, Lisnic VJ, Jonjic S (2014) Rodent models of congenital cytomegalovirus infection. Methods Mol Biol 1119:289–310. https://doi.org/10.1007/978-1-62703-788-4_16

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Kosmac K, Bantug GR, Pugel EP, Cekinovic D, Jonjic S, Britt WJ (2013) Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development. PLoS Pathog 9(3):e1003200. https://doi.org/10.1371/journal.ppat.1003200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Brizić I, Hiršl L, Britt WJ, Krmpotić A, Jonjić S (2017) Immune responses to congenital cytomegalovirus infection. Microbes Infect. https://doi.org/10.1016/j.micinf.2017.12.010

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bantug GR, Cekinovic D, Bradford R, Koontz T, Jonjic S, Britt WJ (2008) CD8+ T lymphocytes control murine cytomegalovirus replication in the central nervous system of newborn animals. J Immunol 181(3):2111–2123

    CAS  Article  Google Scholar 

  14. 14.

    Brizić I, Šušak B, Arapović M, Huszthy PC, Hiršl L, Kveštak D, Juranić Lisnić V, Golemac M, Pernjak Pugel E, Tomac J, Oxenius A, Britt WJ, Arapović J, Krmpotić A, Jonjić S (2018) Brain-resident memory CD8+ T cells induced by congenital CMV infection prevent brain pathology and virus reactivation. Eur J Immunol. https://doi.org/10.1002/eji.201847526

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Jordan S, Krause J, Prager A, Mitrovic M, Jonjic S, Koszinowski UH, Adler B (2011) Virus progeny of murine cytomegalovirus bacterial artificial chromosome pSM3fr show reduced growth in salivary Glands due to a fixed mutation of MCK-2. J Virol 85(19):10346–10353. https://doi.org/10.1128/JVI.00545-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Brizić I, Lisnić B, Brune W, Hengel H, Jonjić S (2018) Cytomegalovirus infection: mouse model. Curr Protoc Immunol 122:e51. https://doi.org/10.1002/cpim.51

    Article  Google Scholar 

  17. 17.

    Cossarizza A, Chang HD, Radbruch A, Akdis M, Andrä I, Annunziato F, Bacher P, Barnaba V, Battistini L, Bauer WM, Baumgart S, Becher B, Beisker W, Berek C, Blanco A, Borsellino G, Boulais PE, Brinkman RR, Büscher M, Busch DH, Bushnell TP, Cao X, Cavani A, Chattopadhyay PK, Cheng Q, Chow S, Clerici M, Cooke A, Cosma A, Cosmi L, Cumano A, Dang VD, Davies D, De Biasi S, Del Zotto G, Della Bella S, Dellabona P, Deniz G, Dessing M, Diefenbach A, Di Santo J, Dieli F, Dolf A, Donnenberg VS, Dörner T, Ehrhardt GRA, Endl E, Engel P, Engelhardt B, Esser C, Everts B, Dreher A, Falk CS, Fehniger TA, Filby A, Fillatreau S, Follo M, Förster I, Foster J, Foulds GA, Frenette PS, Galbraith D, Garbi N, García-Godoy MD, Geginat J, Ghoreschi K, Gibellini L, Goettlinger C, Goodyear CS, Gori A, Grogan J, Gross M, Grützkau A, Grummitt D, Hahn J, Hammer Q, Hauser AE, Haviland DL, Hedley D, Herrera G, Herrmann M, Hiepe F, Holland T, Hombrink P, Houston JP, Hoyer BF, Huang B, Hunter CA, Iannone A, Jäck HM, Jávega B, Jonjic S, Juelke K, Jung S, Kaiser T, Kalina T, Keller B, Khan S, Kienhöfer D, Kroneis T, Kunkel D, Kurts C, Kvistborg P, Lannigan J, Lantz O, Larbi A, LeibundGut-Landmann S, Leipold MD, Levings MK, Litwin V, Liu Y, Lohoff M, Lombardi G, Lopez L, Lovett-Racke A, Lubberts E, Ludewig B, Lugli E, Maecker HT, Martrus G, Matarese G, Maueröder C, McGrath M, McInnes I, Mei HE, Melchers F, Melzer S, Mielenz D, Mills K, Mirrer D, Mjösberg J, Moore J, Moran B, Moretta A, Moretta L, Mosmann TR, Müller S, Müller W, Münz C, Multhoff G, Munoz LE, Murphy KM, Nakayama T, Nasi M, Neudörfl C, Nolan J, Nourshargh S, O’Connor JE, Ouyang W, Oxenius A, Palankar R, Panse I, Peterson P, Peth C, Petriz J, Philips D, Pickl W, Piconese S, Pinti M, Pockley AG, Podolska MJ, Pucillo C, Quataert SA, Radstake TRDJ, Rajwa B, Rebhahn JA, Recktenwald D, Remmerswaal EBM, Rezvani K, Rico LG, Robinson JP, Romagnani C, Rubartelli A, Ruckert B, Ruland J, Sakaguchi S, Sala-de-Oyanguren F, Samstag Y, Sanderson S, Sawitzki B, Scheffold A, Schiemann M, Schildberg F, Schimisky E, Schmid SA, Schmitt S, Schober K, Schüler T, Schulz AR, Schumacher T, Scotta C, Shankey TV, Shemer A, Simon AK, Spidlen J, Stall AM, Stark R, Stehle C, Stein M, Steinmetz T, Stockinger H, Takahama Y, Tarnok A, Tian Z, Toldi G, Tornack J, Traggiai E, Trotter J, Ulrich H, van der Braber M, van Lier RAW, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Volkmann K, Waisman A, Walker R, Ward MD, Warnatz K, Warth S, Watson JV, Watzl C, Wegener L, Wiedemann A, Wienands J, Willimsky G, Wing J, Wurst P, Yu L, Yue A, Zhang Q, Zhao Y, Ziegler S, Zimmermann J (2017) Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 47(10):1584–1797. https://doi.org/10.1002/eji.201646632

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Walton SM, Wyrsch P, Munks MW, Zimmermann A, Hengel H, Hill AB, Oxenius A (2008) The dynamics of mouse cytomegalovirus-specific CD4 T cell responses during acute and latent infection. J Immunol 181(2):1128–1134

    CAS  Article  Google Scholar 

  19. 19.

    Schreiner D, King CG (2018) CD4+ memory T cells at home in the tissue: mechanisms for health and disease. Front Immunol 9:2394. https://doi.org/10.3389/fimmu.2018.02394

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mueller SN, Mackay LK (2016) Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol 16(2):79–89. https://doi.org/10.1038/nri.2015.3

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Jonjic S, Pavic I, Lucin P, Rukavina D, Koszinowski UH (1990) Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. J Virol 64(11):5457–5464

    CAS  Article  Google Scholar 

  22. 22.

    Jeitziner SM, Walton SM, Torti N, Oxenius A (2013) Adoptive transfer of cytomegalovirus-specific effector CD4+ T cells provides antiviral protection from murine CMV infection. Eur J Immunol 43(11):2886–2895. https://doi.org/10.1002/eji.201343690

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Reuter JD, Wilson JH, Idoko KE, van den Pol AN (2005) CD4+ T-cell reconstitution reduces cytomegalovirus in the immunocompromised brain. J Virol 79(15):9527–9539. https://doi.org/10.1128/JVI.79.15.9527-9539.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Cheeran MC, Gekker G, Hu S, Palmquist JM, Lokensgard JR (2005) T cell-mediated restriction of intracerebral murine cytomegalovirus infection displays dependence upon perforin but not interferon-gamma. J Neurovirol 11(3):274–280. https://doi.org/10.1080/13550280590952808

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Li L, Lee HH, Bell JJ, Gregg RK, Ellis JS, Gessner A, Zaghouani H (2004) IL-4 utilizes an alternative receptor to drive apoptosis of Th1 cells and skews neonatal immunity toward Th2. Immunity 20(4):429–440

    Article  Google Scholar 

  26. 26.

    Simon AK, Hollander GA, McMichael A (2015) Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 282(1821):20143085. https://doi.org/10.1098/rspb.2014.3085

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Debock I, Flamand V (2014) Unbalanced neonatal CD4(+) T-Cell immunity. Front Immunol 5:393. https://doi.org/10.3389/fimmu.2014.00393

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Huygens A, Lecomte S, Tackoen M, Olislagers V, Delmarcelle Y, Burny W, Van Rysselberge M, Liesnard C, Larsen M, Appay V, Donner C, Marchant A (2015) Functional exhaustion limits CD4+ and CD8+ T-cell responses to congenital cytomegalovirus infection. J Infect Dis 212(3):484–494. https://doi.org/10.1093/infdis/jiv071

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Lidehäll AK, Engman ML, Sund F, Malm G, Lewensohn-Fuchs I, Ewald U, Tötterman TH, Karltorp E, Korsgren O, Eriksson BM (2013) Cytomegalovirus-specific CD4 and CD8 T cell responses in infants and children. Scand J Immunol 77(2):135–143. https://doi.org/10.1111/sji.12013

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Hayashi N, Kimura H, Morishima T, Tanaka N, Tsurumi T, Kuzushima K (2003) Flow cytometric analysis of cytomegalovirus-specific cell-mediated immunity in the congenital infection. J Med Virol 71(2):251–258. https://doi.org/10.1002/jmv.10477

    Article  PubMed  Google Scholar 

  31. 31.

    Laidlaw BJ, Zhang N, Marshall HD, Staron MM, Guan T, Hu Y, Cauley LS, Craft J, Kaech SM (2014) CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41(4):633–645. https://doi.org/10.1016/j.immuni.2014.09.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Prasad S, Hu S, Sheng WS, Singh A, Lokensgard JR (2015) Tregs modulate lymphocyte proliferation, activation, and resident-memory T-cell accumulation within the brain during MCMV infection. PLoS ONE 10(12):e0145457. https://doi.org/10.1371/journal.pone.0145457

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Graham JB, Da Costa A, Lund JM (2014) Regulatory T cells shape the resident memory T cell response to virus infection in the tissues. J Immunol 192(2):683–690. https://doi.org/10.4049/jimmunol.1202153

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Mockus TE, Shwetank Lauver MD, Ren HM, Netherby CS, Salameh T, Kawasawa YI, Yue F, Broach JR, Lukacher AE (2018) CD4 T cells control development and maintenance of brain-resident CD8 T cells during polyomavirus infection. PLoS Pathog 14(10):e1007365. https://doi.org/10.1371/journal.ppat.1007365

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Collins N, Jiang X, Zaid A, Macleod BL, Li J, Park CO, Haque A, Bedoui S, Heath WR, Mueller SN, Kupper TS, Gebhardt T, Carbone FR (2016) Skin CD4(+) memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat Commun 7:11514. https://doi.org/10.1038/ncomms11514

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Edvard Ražić, Dijana Rumora, Miro Samsa, Edvard Marinović, Ante Miše and Tina Rudančić for the excellent technical support. The study was supported by NIH (1RO1AI089956-01A1) (to W.J.B. and S.J.), by the European Regional Development Fund (KK.01.1.1.01.0006) (to S.J.) and University of Rijeka (uniri-biomed-18-297 to I.B.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stipan Jonjić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue on Immunological Imprinting during Chronic Viral Infection.

Edited by: Matthias J. Reddehase.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brizić, I., Hiršl, L., Šustić, M. et al. CD4 T cells are required for maintenance of CD8 TRM cells and virus control in the brain of MCMV-infected newborn mice. Med Microbiol Immunol 208, 487–494 (2019). https://doi.org/10.1007/s00430-019-00601-0

Download citation

Keywords

  • Mouse cytomegalovirus
  • Tissue-resident memory T cells
  • Brain pathology
  • CD4 T cells
  • Congenital CMV infection