Skip to main content
Log in

Maturation and cytokine pattern of human dendritic cells in response to different yeasts

  • Rapid Communication
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Activated dendritic cells (DC) induce and polarize T-cell responses by expression of distinct maturation markers and cytokines. This study systematically investigated the capacity of different biotechnically relevant yeast species and strains including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Candida glabrata to initiate maturation of human DC. As important prerequisite for T-cell activation, all yeasts were shown to effectively induce, though to a different extent, the expression of the activation marker CD83, the co-stimulatory molecules CD80, CD86, CD54, CD58, and CD40, as well as the antigen-presenting molecules MHCs I and II. Furthermore, yeast-activated DC secreted various cytokines including inflammatory TNF-α, IL-6, IL-8, and IL-1β or T-cell polarizing IL-12, IL-10, IL-23, and IL-27. Variability was observed in the expression of TNF-α, IL-6, IL-8, IL-1β, and IL-10 in response to the tested yeasts, whereas expression levels of IL-12, IL-23, and IL-27 were similar. Interestingly, maturation marker expression and cytokine secretion were not negatively affected after application of yeast mutants with altered cell wall mannoprotein structure (Δmnn11) or defective in protein N-glycosylation (Δost3), indicating that elongated cell wall mannoproteins at the outer yeast cell surface are not a prerequisite for the observed yeast-mediated DC maturation. Thus, our data provide a valuable basic knowledge for the future design of effective yeast-based delivery approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258

    Article  CAS  PubMed  Google Scholar 

  2. Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11(4):275–288

    Article  CAS  PubMed  Google Scholar 

  3. Bazan SB, Geginat G, Breinig T, Schmitt MJ, Breinig F (2011) Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes. Vaccine 29(45):8165–8173

    Article  CAS  PubMed  Google Scholar 

  4. Walch B, Breinig T, Schmitt MJ, Breinig F (2012) Delivery of functional DNA and messenger RNA to mammalian phagocytic cells by recombinant yeast. Gene Ther 19(3):237–245

    Article  CAS  PubMed  Google Scholar 

  5. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667

    Article  CAS  PubMed  Google Scholar 

  6. Erwig LP, Gow NA (2016) Interactions of fungal pathogens with phagocytes. Nat Rev 14(3):163–176

    CAS  Google Scholar 

  7. Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, Bellgrau D, Franzusoff A, Duke RC, Wilson CC (2001) Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nature medicine 7(5):625–629

    Article  CAS  PubMed  Google Scholar 

  8. Walch-Ruckheim B, Schmitt MJ, Breinig F (2014) Schizosaccharomyces pombe: a novel transport vehicle of functional DNA and mRNA into mammalian antigen-presenting cells. Vaccine 32(46):6029–6033

    Article  PubMed  Google Scholar 

  9. Rizzetto L, Kuka M, De Filippo C, Cambi A, Netea MG, Beltrame L, Napolitani G, Torcia MG, D’Oro U, Cavalieri D (2010) Differential IL-17 production and mannan recognition contribute to fungal pathogenicity and commensalism. J Immunol 184(8):4258–4268

    Article  CAS  PubMed  Google Scholar 

  10. Walch B, Breinig T, Geginat G, Schmitt MJ, Breinig F (2011) Yeast-based protein delivery to mammalian phagocytic cells is increased by coexpression of bacterial listeriolysin. Microbes Infect 13(11):908–913

    Article  CAS  PubMed  Google Scholar 

  11. Bazan SB, Breinig T, Schmitt MJ, Breinig F (2014) Heat treatment improves antigen-specific T cell activation after protein delivery by several but not all yeast genera. Vaccine 32(22):2591–2598

    Article  CAS  PubMed  Google Scholar 

  12. Remondo C, Cereda V, Mostbock S, Sabzevari H, Franzusoff A, Schlom J, Tsang KY (2009) Human dendritic cell maturation and activation by a heat-killed recombinant yeast (Saccharomyces cerevisiae) vector encoding carcinoembryonic antigen. Vaccine 27(7):987–994

    Article  CAS  PubMed  Google Scholar 

  13. Geijtenbeek TB, Gringhuis SI (2016) C-type lectin receptors in the control of T helper cell differentiation. Nat Rev Immunol 16(7):433–448

    Article  CAS  PubMed  Google Scholar 

  14. d’Ostiani CF, Del Sero G, Bacci A, Montagnoli C, Spreca A, Mencacci A, Ricciardi-Castagnoli P, Romani L (2000) Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J Exp Med 191(10):1661–1674

    Article  PubMed  PubMed Central  Google Scholar 

  15. Buentke E, Heffler LC, Wallin RP, Lofman C, Ljunggren HG, Scheynius A (2001) The allergenic yeast Malassezia furfur induces maturation of human dendritic cells. Clin Exp Allergy 31(10):1583–1593

    Article  CAS  PubMed  Google Scholar 

  16. Barron MA, Blyveis N, Pan SC, Wilson CC (2006) Human dendritic cell interactions with whole recombinant yeast: implications for HIV-1 vaccine development. J Clin Immunol 26(3):251–264

    Article  CAS  PubMed  Google Scholar 

  17. Levitz SM (2010) Innate recognition of fungal cell walls. PLoS Pathogens 6(4):e1000758

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jungmann J, Munro S (1998) Multi-protein complexes in the cis golgi of Saccharomyces cerevisiae with alpha-1,6-mannosyltransferase activity. EMBO J 17(2):423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karaoglu D, Kelleher DJ, Gilmore R (1995) Functional characterization of Ost3p. Loss of the 34-kD subunit of the Saccharomyces cerevisiae oligosaccharyltransferase results in biased underglycosylation of acceptor substrates. J Cell Biol 130(3):567–577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Birgit Glombitza and Roswitha Schepp for excellent technical assistance and all volunteers for providing their blood. This work was supported by grants from the Alois Lauer foundation, Dillingen, Germany and Saarland Staatskanzlei (LFFP 1303) to FB, and from CAPES (Brasília, Brazil) to SBB and MJS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Breinig.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Silvia Boschi Bazan and Barbara Walch-Rückheim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazan, S.B., Walch-Rückheim, B., Schmitt, M.J. et al. Maturation and cytokine pattern of human dendritic cells in response to different yeasts. Med Microbiol Immunol 207, 75–81 (2018). https://doi.org/10.1007/s00430-017-0528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-017-0528-8

Keywords

Navigation