Advertisement

Medical Microbiology and Immunology

, Volume 205, Issue 4, pp 297–314 | Cite as

Immunity in the spleen and blood of mice immunized with irradiated Toxoplasma gondii tachyzoites

  • Nahiara Esteves Zorgi
  • Andrés Jimenez GalisteoJr.
  • Maria Notomi Sato
  • Nanci do Nascimento
  • Heitor Franco de AndradeJr.Email author
Original Investigation

Abstract

Toxoplasma gondii infection induces a strong and long-lasting immune response that is able to prevent most reinfections but allows tissue cysts. Irradiated, sterilized T. gondii tachyzoites are an interesting vaccine, and they induce immunity that is similar to infection, but without cysts. In this study, we evaluated the cellular immune response in the blood and spleen of mice immunized with this preparation by mouth (v.o.) or intraperitoneally (i.p.) and analyzed the protection after challenge with viable parasites. BALB/c mice were immunized with three i.p. or v.o. doses of irradiated T. gondii tachyzoites. Oral challenge with ten cysts of the ME-49 or VEG strain at 90 days after the last dose resulted in high levels of protection with low parasite burden in the immunized animals. There were higher levels of specific IgG, IgA and IgM antibodies in the serum, and the i.p. immunized mice had higher levels of the high-affinity IgG and IgM antibodies than the orally immunized mice, which had more high-affinity IgA antibodies. B cells (CD19+), plasma cells (CD138+) and the CD4+ and CD8+ T cell populations were increased in both the blood and spleen. Cells from the spleen of the i.p. immunized mice also showed antigen-induced production of interleukin-10 (IL-10), interferon gamma (IFN-γ) and interleukin 4 (IL-4). The CD4+ T cells, B cells and likely CD8+ T cells from the spleens of the i.p. immunized mice proliferated with a specific antigen. The protection was correlated with the spleen and blood CD8+ T cell, high-affinity IgG and IgM and antigen-induced IL-10 and IL-4 production. Immunization with irradiated T. gondii tachyzoites induces an immune response that is mediated by B cells and CD4+ and CD8+ T cells, with increased humoral and cellular immune responses that are necessary for host protection after infection. The vaccine is similar to natural infection, but free of tissue cysts; this immunity restrains infection at challenge and can be an attractive and efficient model for vaccine development in toxoplasmosis.

Keywords

Toxoplasma gondii Vaccine CD4+ T lymphocytes CD8+ T lymphocytes B lymphocytes Ionizing radiation 

Notes

Acknowledgments

We thank R.P.A. Cardoso and N.M. Orii for their reliable and available technical assistance. We thank our collaborators P.O. Rigatto, Ph.D., for assistance in the flow cytometry analysis and L.M.S Oliveira for assistance in cytokine detection. N.E. Zorgi used this work as a part of her Ph.D. program and was supported by CNPq. H.F. Andrade Jr. is a CNPq and FFM fellow. This work was supported by grants from FAPESP (2013/04676-9) and LIMHCFMUSP.

References

  1. 1.
    Dubey JP (2008) The history of Toxoplasma gondii—the first 100 years. J Eukaryot Microbiol 55(6):467–475CrossRefPubMedGoogle Scholar
  2. 2.
    Torgerson PR, Mastroiacovo P (2013) The global burden of congenital toxoplasmosis: a systematic review. Bull World Health Organ 91(7):501–508CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vitale M, Tumino G, Partanna S, La Chiusa S, Mancuso G, Giglia ML, Presti VD (2014) Impact of traditional practices on food safety: a case of acute toxoplasmosis related to the consumption of contaminated raw pork sausage in Italy. J Food Prot 77(4):643–646CrossRefPubMedGoogle Scholar
  4. 4.
    Hotop A, Buschtöns S, Bangoura B, Zöller B, Koethe M, Spekker-Bosker K, Hotop SK, Tenter AM, Däubener W, Straubinger RK, Groß U (2014) Humoral immune responses in chickens and turkeys after infection with Toxoplasma gondii by using recombinant antigens. Parasitol Res 113(4):1473–1480CrossRefPubMedGoogle Scholar
  5. 5.
    Smith G (2013) Food- and water-borne disease: using case control studies to estimate the force of infection that accounts for primary, sporadic cases. Epidemics 5(2):77–84CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    De Moura L, Bahia-Oliveira LM, Wada MY, Jones JL, Tuboi SH, Carmo EH, Ramalho WM, Camargo NJ, Trevisan R, Graça RM, da Silva AJ, Moura I, Dubey JP, Garrett DO (2006) Waterborne toxoplasmosis, Brazil, from field to gene. Emerg Infect Dis 12(2):326–329CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dubey JP, Jones JL (2008) Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol 38(11):1257–1278CrossRefPubMedGoogle Scholar
  8. 8.
    Jones JL, Dubey JP (2012) Foodborne toxoplasmosis. Clin Infect Dis 55(6):845–851CrossRefPubMedGoogle Scholar
  9. 9.
    Innes EA, Bartley PM, Rocchi M, Benavidas-Silvan J, Burrells A, Hotchkiss E, Chianini F, Canton G, Katzer F (2011) Developing vaccines to control protozoan parasites in ruminants: dead or alive? Vet Parasitol 180(1–2):155–163CrossRefPubMedGoogle Scholar
  10. 10.
    Dupont CD, Christian DA, Hunter CA (2012) Immune response and immunopathology during toxoplasmosis. Semin Immunopathol 34(6):793–813CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Escoffier P, Jeanny JC, Marinach-Patrice C, Jonet L, Raoul W, Behar-Cohen F, Paris L, Danis M, Dubremetz JF, Mazier D (2010) Toxoplasma gondii: flat-mounting of retina as a new tool for the observation of ocular infection in mice. Exp Parasitol 126(2):259–262CrossRefPubMedGoogle Scholar
  12. 12.
    Luma HN, Tchaleu BC, Temfack E, Doualla MS, Ndenga DP, Mapoure YN, Njamnshi AK, Djientcheu VD (2013) HIV-associated central nervous system disease in patients admitted at the Douala General Hospital between 2004 and 2009: a retrospective study. AIDS Res Treat 2013:709810PubMedPubMedCentralGoogle Scholar
  13. 13.
    Derouin F, Pelloux H (2008) Prevention of toxoplasmosis in transplant patients. Clin Microbiol Infect 14(12):1089–1101CrossRefPubMedGoogle Scholar
  14. 14.
    Alvarado-Esquivel C, Liesenfeld O, Torres-Castorena A, Estrada-Martínez S, Urbina-Alvarez JD, Ramos-de la Rocha M, Márquez-Conde JA, Dubey JP (2010) Seroepidemiology of Toxoplasma gondii infection in patients with vision and hearing impairments, cancer, HIV, or undergoing hemodialysis in Durango, Mexico. J Parasitol 96(3):505–508CrossRefPubMedGoogle Scholar
  15. 15.
    Buxton D (1993) Toxoplasmosis: the first commercial vaccine. Parasitol Today 9(9):335–337CrossRefPubMedGoogle Scholar
  16. 16.
    Hiszczyńska-Sawicka E, Gatkowska JM, Grzybowski MM, Długońska H (2014) Veterinary vaccines against toxoplasmosis. Parasitology 141(11):1365–1378CrossRefPubMedGoogle Scholar
  17. 17.
    Mévélec MN, Ducournau C, Bassuny Ismael A, Olivier M, Sèche E, Lebrun M, Bout D, Dimier-Poisson I (2010) Mic1-3 knockout Toxoplasma gondii is a good candidate for a vaccine against T. gondii-induced abortion in sheep. Vet Res 41(4):49CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hiramoto RM, Galisteo A Jr, Do Nascimento N, Andrade HF Jr (2002) 200 Gy sterilized Toxoplasma gondii tachyzoites maintain metabolic functions and mammalian cell invasion, eliciting cellular immunity and cytokine response similar to natural infection in mice. Vaccine 20(16):2072–2081CrossRefPubMedGoogle Scholar
  19. 19.
    Liu MM, Yuan ZG, Peng GH, Zhou DH, He XH, Yan C, Yin CC, He Y, Lin RQ, Song HQ, Zhu XQ (2010) Toxoplasma gondii microneme protein 8 (MIC8) is a potential vaccine candidate against toxoplasmosis. Parasitol Res 106(5):1079–1084CrossRefPubMedGoogle Scholar
  20. 20.
    Parthasarathy S, Fong MY, Ramaswamy K, Lau YL (2013) Protective immune response in BALB/c mice induced by DNA vaccine of the ROP8 gene of Toxoplasma gondii. Am J Trop Med Hyg 88(5):883–887CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhao Y, Huang B, Huang S, Zheng H, Li YQ, Lun ZR, Shen J, Wang Y, Kasper LH, Lu F (2013) Evaluation of the adjuvant effect of pidotimod on the immune protection induced by UV-attenuated Toxoplasma gondii in mouse models. Parasitol Res 112(9):3151–3160CrossRefPubMedGoogle Scholar
  22. 22.
    Zorgi NE, Costa A, Galisteo AJ Jr, do Nascimento N, de Andrade HF Jr (2011) Humoral responses and immune protection in mice immunized with irradiated T. gondii tachyzoites and challenged with three genetically distinct strains of T. gondii. Immunol Lett 138(2):187–196CrossRefPubMedGoogle Scholar
  23. 23.
    De Rosa SC (2012) Vaccine applications of flow cytometry. Methods 57(3):383–391CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Teo WH, Nurul AA, Norazmi MN (2012) Immunogenicity of recombinant BCG-based vaccine expressing the 22 kDa of serine repeat antigen (SE22) of Plasmodium falciparum. Trop Biomed 29(2):239–253PubMedGoogle Scholar
  25. 25.
    Munoz M, Liesenfeld O, Heimesaat MM (2011) Immunology of Toxoplasma gondii. Immunol Rev 240(1):269–285CrossRefPubMedGoogle Scholar
  26. 26.
    Grigg ME, Boothroyd JC (2001) Rapid identification of virulent type I strains of the protozoan pathogen Toxoplasma gondii by PCR-restriction fragment length polymorphism analysis at the B1 gene. J Clin Microbiol 39(1):398–400CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Filisetti D, Candolfi E (2004) Immune response to Toxoplasma gondii. Ann Ist Super Sanita 40(1):71–80PubMedGoogle Scholar
  28. 28.
    Dubey JP, Lindsay DS, Speer CA (1998) Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 11(2):267–299PubMedPubMedCentralGoogle Scholar
  29. 29.
    Dubey JP (2005) Unexpected oocyst shedding by cats fed Toxoplasma gondii tachyzoites: in vivo stage conversion and strain variation. Vet Parasitol 133(4):289–298CrossRefPubMedGoogle Scholar
  30. 30.
    Lu G, Wang L, Zhou A, Han Y, Guo J, Song P, Zhou H, Cong H, Zhao Q, He S (2015) Epitope analysis, expression and protection of SAG5A vaccine against Toxoplasma gondii. Acta Trop 146:66–72CrossRefPubMedGoogle Scholar
  31. 31.
    Li XZ, Wang XH, Xia LJ, Weng YB, Hernandez JA, Tu LQ, Li LT, Li SJ, Yuan ZG (2015) Protective efficacy of recombinant canine adenovirus type-2 expressing TgROP18 (CAV-2-ROP18) against acute and chronic Toxoplasma gondii infection in mice. BMC Infect Dis 15(1):114CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tao Q, Fang R, Zhang W, Wang Y, Cheng J, Li Y, Fang K, Khan MK, Hu M, Zhou Y, Zhao J (2013) Protective immunity induced by a DNA vaccine-encoding Toxoplasma gondii microneme protein 11 against acute toxoplasmosis in BALB/c mice. Parasitol Res 112(8):2871–2877CrossRefPubMedGoogle Scholar
  33. 33.
    Hassan IA, Wang S, Xu L, Yan R, Song X, XiangRui L (2014) Immunological response and protection of mice immunized with plasmid encoding Toxoplasma gondii glycolytic enzyme malate dehydrogenase. Parasite Immunol 36(12):674–683CrossRefPubMedGoogle Scholar
  34. 34.
    Chen J, Li ZY, Huang SY, Petersen E, Song HQ, Zhou DH, Zhu XQ (2014) Protective efficacy of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) adjuvated with recombinant IL-15 and IL-21 against experimental toxoplasmosis in mice. BMC Infect Dis 14:487CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vinuesa CG, Chang PP (2013) Innate B cell helpers reveal novel types of antibody responses. Nat Immunol 14(2):119–126CrossRefPubMedGoogle Scholar
  36. 36.
    Casadevall A (2004) The methodology for determining the efficacy of antibody-mediated immunity. J Immunol Methods 291(1–2):1–10CrossRefPubMedGoogle Scholar
  37. 37.
    Kotresha D, Noordin R (2010) Recombinant proteins in the diagnosis of toxoplasmosis. APMIS 118(8):529–542PubMedGoogle Scholar
  38. 38.
    Petersen E (2007) Toxoplasmosis. Semin Fetal Neonatal Med 12(3):214–223CrossRefPubMedGoogle Scholar
  39. 39.
    Denkers EY, Gazzinelli RT (1998) Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev 11(4):569–588PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kang H, Remington JS, Suzuki Y (2000) Decreased resistance of B cell-deficient mice to infection with Toxoplasma gondii despite unimpaired expression of IFN-gamma, TNF-alpha, and inducible nitric oxide synthase. J Immunol 164(5):2629–2634CrossRefPubMedGoogle Scholar
  41. 41.
    Wang L, He LY, Meng DD, Chen ZW, Wen H, Fang GS, Luo QL, Huang KQ, Shen JL (2015) Seroprevalence and genetic characterization of Toxoplasma gondii in cancer patients in Anhui Province, Eastern China. Parasites Vectors 8:162CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Macpherson AJ, Geuking MB, McCoy KD (2012) Homeland security: IgA immunity at the frontiers of the body. Trends Immunol 33(4):160–167CrossRefPubMedGoogle Scholar
  43. 43.
    Woof JM, Kerr MA (2006) The function of immunoglobulin A in immunity. J Pathol 208(2):270–282CrossRefPubMedGoogle Scholar
  44. 44.
    Mkaddem SB, Christou I, Rossato E, Berthelot L, Lehuen A, Monteiro RC (2014) IgA, IgA receptors, and their anti-inflammatory properties. Curr Top Microbiol Immunol 382:221–235PubMedGoogle Scholar
  45. 45.
    Pabst O (2012) New concepts in the generation and functions of IgA. Nat Rev Immunol 12(12):821–832CrossRefPubMedGoogle Scholar
  46. 46.
    Wang HL, Pang M, Yin LT, Zhang JH, Meng XL, Yu BF, Guo R, Bai JZ, Zheng GP, Yin GR (2014) Intranasal immunisation of the recombinant Toxoplasma gondii receptor for activated C kinase 1 partly protects mice against T. gondii infection. Acta Trop 137:58–66CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang TE, Yin LT, Li RH, Wang HL, Meng XL, Yin GR (2015) Protective immunity induced by peptides of AMA1, RON2 and RON4 containing T-and B-cell epitopes via an intranasal route against toxoplasmosis in mice. Parasites Vectors 8(1):15CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pellegrino P, Clementi E, Radice S (2015) On vaccine’s adjuvants and autoimmunity: current evidence and future perspectives. Autoimmun Rev 14(10):880–888CrossRefPubMedGoogle Scholar
  49. 49.
    Shapiro-Shelef M, Calame K (2005) Regulation of plasma-cell development. Nat Rev Immunol 5(3):230–242CrossRefPubMedGoogle Scholar
  50. 50.
    Minges Wols HA, Underhill GH, Kansas GS, Witte PL (2002) The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity. J Immunol 169(8):4213–4221CrossRefPubMedGoogle Scholar
  51. 51.
    Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K (2010) Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol 28:243–273CrossRefPubMedGoogle Scholar
  52. 52.
    McHeyzer-Williams LJ, McHeyzer-Williams MG (2005) Antigen-specific memory B cell development. Annu Rev Immunol 23:487–513CrossRefPubMedGoogle Scholar
  53. 53.
    Plotkin SA (2008) Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis 47(3):401–409CrossRefPubMedGoogle Scholar
  54. 54.
    Plzakova L, Kubelkova K, Krocova Z, Zarybnicka L, Sinkorova Z, Macela A (2014) B cell subsets are activated and produce cytokines during early phases of Francisella tularensis LVS infection. Microb Pathog 75:49–58CrossRefPubMedGoogle Scholar
  55. 55.
    Lu CY, Ni YH, Chiang BL, Chen PJ, Chang MH, Chang LY, Su IJ, Kuo HS, Huang LM, Chen DS, Lee CY (2008) Humoral and cellular immune responses to a hepatitis B vaccine booster 15–18 years after neonatal immunization. J Infect Dis 197(10):1419–1426CrossRefPubMedGoogle Scholar
  56. 56.
    Pieper K, Grimbacher B, Eibel H (2013) B-cell biology and development. J Allergy Clin Immunol 131(4):959–971CrossRefPubMedGoogle Scholar
  57. 57.
    Igietseme JU, Eko FO, He Q, Black CM (2004) Antibody regulation of T cell immunity: implications for vaccine strategies against intracellular pathogens. Expert Rev Vaccines 3(1):23–34CrossRefPubMedGoogle Scholar
  58. 58.
    Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A (1992) Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol 149(1):175–180PubMedGoogle Scholar
  59. 59.
    Li ZY, Chen J, Petersen E, Zhou DH, Huang SY, Song HQ, Zhu XQ (2014) Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice. Vaccine 32(25):3058–3065CrossRefPubMedGoogle Scholar
  60. 60.
    Grover HS, Chu HH, Kelly FD, Yang SJ, Reese ML, Blanchard N, Gonzalez F, Chan SW, Boothroyd JC, Shastri N, Robey EA (2014) Impact of regulated secretion on antiparasitic CD8 T cell responses. Cell Rep 7(5):1716–1728CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Moore T, Ekworomadu CO, Eko FO, MacMillan L, Ramey K, Ananaba GA, Patrickson JW, Nagappan PR, Lyn D, Black CM, Igietseme JU (2003) Fc receptor-mediated antibody regulation of T cell immunity against intracellular pathogens. J Infect Dis 188(4):617–624CrossRefPubMedGoogle Scholar
  62. 62.
    Johnson LL, Sayles PC (2002) Deficient humoral responses underlie susceptibility to Toxoplasma gondii in CD4-deficient mice. Infect Immun 70(1):185–191CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bickle QD (2009) Radiation-attenuated schistosome vaccination—a brief historical perspective. Parasitology 136(12):1621–1632CrossRefPubMedGoogle Scholar
  64. 64.
    Hanekom WA (2005) The immune response to BCG vaccination of newborns. Ann NY Acad Sci 1062:69–78CrossRefPubMedGoogle Scholar
  65. 65.
    Fox BA, Bzik DJ (2002) De novo pyrimidine biosynthesis is required for virulence of Toxoplasma gondii. Nature 415(6874):926–929CrossRefPubMedGoogle Scholar
  66. 66.
    Gigley JP, Fox BA, Bzik DJ (2009) Cell-mediated immunity to Toxoplasma gondii develops primarily by local Th1 host immune responses in the absence of parasite replication. J Immunol 182(2):1069–1078CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gigley JP, Fox BA, Bzik DJ (2009) Long-term immunity to lethal acute or chronic type II Toxoplasma gondii infection is effectively induced in genetically susceptible C57BL/6 mice by immunization with an attenuated type I vaccine strain. Infect Immun 77(12):5380–5388CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Landrith TA, Harris TH, Wilson EH (2015) Characteristics and critical function of CD8+ T cells in the Toxoplasma-infected brain. Semin Immunopathol 37(3):261–270CrossRefPubMedGoogle Scholar
  69. 69.
    Ciabattini A, Pettini E, Andersen P, Pozzi G, Medaglini D (2008) Primary activation of antigen-specific naive CD4+ and CD8+ T cells following intranasal vaccination with recombinant bacteria. Infect Immun 76(12):5817–5825CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112(5):1557–1569CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Cohen SB, Maurer KJ, Egan CE, Oghumu S, Satoskar AR, Denkers EY (2013) CXCR3-dependent CD4+ T cells are required to activate inflammatory monocytes for defense against intestinal infection. PLoS Pathog 9(10):e1003706CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kasper LH, Khan IA, Ely KH, Buelow R, Boothroyd JC (1992) Antigen-specific (p30) mouse CD8+ T cells are cytotoxic against Toxoplasma gondii-infected peritoneal macrophages. J Immunol 148(5):1493–1498PubMedGoogle Scholar
  73. 73.
    Quah BJ, Wijesundara DK, Ranasinghe C, Parish CR (2013) Fluorescent target array T helper assay: a multiplex flow cytometry assay to measure antigen-specific CD4+ T cell-mediated B cell help in vivo. J Immunol Methods 387(1–2):181–190CrossRefPubMedGoogle Scholar
  74. 74.
    Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, Holman LA, James ER, Billingsley PF, Gunasekera A, Richman A, Chakravarty S, Manoj A, Velmurugan S, Li M, Ruben AJ, Li T, Eappen AG, Stafford RE, Plummer SH, Hendel CS, Novik L, Costner PJ, Mendoza FH, Saunders JG, Nason MC, Richardson JH, Murphy J, Davidson SA, Richie TL, Sedegah M, Sutamihardja A, Fahle GA, Lyke KE, Laurens MB, Roederer M, Tewari K, Epstein JE, Sim BK, Ledgerwood JE, Graham BS, Hoffman SL, VRC 312 Study Team (2013) Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341(6152):1359–1365CrossRefPubMedGoogle Scholar
  75. 75.
    Papatpremsiri A, Junpue P, Loukas A, Brindley PJ, Bethony JM, Sripa B, Laha T (2014) Immunization and challenge shown by hamsters infected with Opisthorchis viverrini following exposure to gamma-irradiated metacercariae of this carcinogenic liver fluke. J Helminthol 90(1):39–47CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nahiara Esteves Zorgi
    • 1
    • 2
  • Andrés Jimenez GalisteoJr.
    • 2
  • Maria Notomi Sato
    • 3
  • Nanci do Nascimento
    • 4
  • Heitor Franco de AndradeJr.
    • 1
    • 2
    • 5
    Email author
  1. 1.Departamento de Parasitologia, Instituto de Ciências BiomédicaUSPSão PauloBrazil
  2. 2.Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo, FMUSPUSPSão PauloBrazil
  3. 3.Departamento de Dermatologia, Instituto de Medicina Tropical de São Paulo, FMUSPUSPSão PauloBrazil
  4. 4.Laboratório de Biologia Molecular, Instituto de Pesquisas Energéticas e NuclearesIPENSão PauloBrazil
  5. 5.Department of Pathology, Faculty of MedicineUniversidade de São PauloSão PauloBrazil

Personalised recommendations