Skip to main content

Advertisement

Log in

Treatment of latent tuberculosis infection induces changes in multifunctional Mycobacterium tuberculosis-specific CD4+ T cells

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

To ascertain whether multiparametric flow cytometry assessment of multifunctional Mycobacterium tuberculosis (Mtb)-specific CD4+ and CD8+ T cells can distinguish between untreated and treated patients with latent tuberculosis infection (LTBI), we enrolled 14 LTBI subjects treated with isoniazid (INH) therapy, 16 untreated LTBI patients, and 25 healthy controls. The analysis of mono-functional CD4+ and CD8+ T cells producing single cytokines showed significant differences only between uninfected and infected LTBI subjects (both treated and untreated). Conversely, the analysis of multifunctional CD4+ T cells revealed a significant reduction in the frequency of two CD4+ T cells subsets, those producing IFN-γ, IL-2, and TNF-α simultaneously (triple positive; p = 0.005) and those producing IL-2 alone (p = 0.0359), as well as a shift towards T cells producing only one cytokine in treated as compared to untreated LTBI subjects. Assigning a triple-positive CD4+ T cells a cut-off >0.082 %, 94 % of untreated LTBI patients were scored as positive, as compared to only 28 % of treated LTBI patients and none of the healthy controls. No significant differences between untreated and treated LTBI subjects in terms of Mtb-specific CD8+ T cell cytokine profiles (p > 0.05) were identified. The significant changes in the cytokine profiles of Mtb-specific T cells after INH therapy suggest that analysis of multifunctional T cells may be a promising means for the monitoring of LTBI treatment success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. World Health Organization (WHO), Global Tuberculosis Control (2013) WHO report 2013. WHO, Geneva, Switzerland. http://www.who.int/tb/publications/global_report/en/References.pdf

  2. Vynnycky E, Fine PE (2000) Lifetime risks, incubation period, and serial interval of tuberculosis. Am J Epidemiol 152:247–263

    Article  CAS  PubMed  Google Scholar 

  3. American Thoracic Society (2000) Targeted tuberculin testing and treatment of latent tuberculosis infection. Am J Respir Crit Care Med 161:S221–S247

    Article  Google Scholar 

  4. Carrara S, Vincenti D, Petrosillo N, Amicosante M, Girardi E, Goletti D (2004) Use of a T cell-based assay for monitoring efficacy of antituberculosis therapy. Clin Infect Dis 38:754–756

    Article  CAS  PubMed  Google Scholar 

  5. Chee CB, KhinMar KW, Gan SH, Barkham TM, Pushparani M, Wang YT (2010) Tuberculosis treatment effect on T-cell interferon-gamma responses to Mycobacterium tuberculosis-specific antigens. Eur Respir J 36:355–361. doi:10.1183/09031936.00151309

    Article  CAS  PubMed  Google Scholar 

  6. Sauzullo I, Mengoni F, Lichtner M et al (2009) In vivo and in vitro effects of antituberculosis treatment on mycobacterial interferon-gamma T cell response. PLoS One 4:e5187. doi:10.1371/journal.pone.0005187

    Article  PubMed Central  PubMed  Google Scholar 

  7. Pai M, Joshi R, Dogra S, Mendiratta DK, Narang P, Dheda K, Kalantri S (2006) Persistently elevated T cell interferon-gamma responses after treatment for latent tuberculosis infection among health care workers in India: a preliminary report. J Occup Med Toxicol 23:1–7

    Google Scholar 

  8. Wilkinson KA, Kon OM, Newton SM et al (2006) Effect of treatment of latent tuberculosis infection on the T cell response to Mycobacterium tuberculosis antigens. J Infect Dis 193:354–359

    Article  CAS  PubMed  Google Scholar 

  9. Higuchi K, Harada N, Mori T (2008) Interferon-γ responses after isoniazid chemotherapy for latent tuberculosis. Respirology 13:468–472. doi:10.1111/j.1440-1843.2008.01244.x

    Article  PubMed  Google Scholar 

  10. Sutherland JS, Adetifa IM, Hill PC, Adegbola RA, Ota MO (2009) Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur J Immunol 39:723–729. doi:10.1002/eji.200838693

    Article  CAS  PubMed  Google Scholar 

  11. Caccamo N, Guggino G, Joosten SA et al (2010) Multifunctional CD4 + T cells correlate with active Mycobacterium tuberculosis infection. Eur J Immunol 40:2211–2220. doi:10.1002/eji.201040455

    Article  CAS  PubMed  Google Scholar 

  12. Harari A, Rozot V, Enders FB et al (2011) Dominant TNFalpha+ Mycobacterium tuberculosis-specific CD4+T cell responses discriminate between latent infection and active disease. Nat Med 17:372–376. doi:10.1038/nm.2299

    Article  CAS  PubMed  Google Scholar 

  13. Streitz M, Fuhrmann S, Thomas D et al (2012) The phenotypic distribution and functional profile of tuberculin-specific CD4 T-cells characterizes different stages of TB infection. Cytometry B Clin Cytom 82:360–368. doi:10.1002/cyto.b.21041

    Article  PubMed  Google Scholar 

  14. Petruccioli E, Petrone L, Vanini V et al (2013) IFNγ/TNFα specific-cells and effector memory phenotype associate with active tuberculosis. J Infect 66:475–486. doi:10.1016/j.jinf.2013.02.004

    Article  PubMed  Google Scholar 

  15. Rozot V, Patrizia A, Vigano S et al (2015) Combined use of Mycobacterium tuberculosis-specific CD4 and CD8 T-cell responses is a powerful diagnostic tool of active tuberculosis. Clin Infect Dis 60:432–437. doi:10.1093/cid/ciu795

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lichtner M, Mascia C, Sauzullo I et al (2015) Multi-functional analysis of CD4+ T-cell response as immune-based model for tuberculosis detection. J Immunol Res (in press)

  17. Leung WL, Law KL, Leung VS, Yip CW, Leung CC, Tam CM, Kam KM (2009) Comparison of intracellular cytokine flow cytometry and an enzyme immunoassay for evaluation of cellular immune response to active tuberculosis. Clin Vaccine Immunol 16:344–351. doi:10.1128/CVI.00159-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Won DI, Park JR (2010) Flow cytometric measurements of TB-specific T cells comparing with QuantiFERON-TB gold. Cytometry B Clin Cytom 78:71–80. doi:10.1002/cyto.b.20503

    PubMed  Google Scholar 

  19. Lee J, Lee SY, Won DI, Cha SI, Park JY, Kim CH (2013) Comparison of whole-blood interferon-γ assay and flow cytometry for the detection of tuberculosis infection. J Infect 66:338–345. doi:10.1016/j.jinf.2012.08.020

    Article  PubMed  Google Scholar 

  20. Sauzullo I, Scrivo R, Mengoni F et al (2014) Multifunctional flow cytometry analysis of CD4 + T cells as an immune biomarker for latent tuberculosis status in patients treated with TNF antagonists. Clin Exp Immunol 176:410–417. doi:10.1111/cei.12290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Millington KA, Innes JA, Hackforth S et al (2007) Dynamic relationship between IFN-gamma and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. J Immunol 178:5217–5226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kim CH, Choi KJ, Yoo SS et al (2014) Comparative analysis of whole-blood interferon-γ and flow cytometry assays for detecting post-treatment immune responses in patients with active tuberculosis. Cytometry B Clin Cytom 86:236–243. doi:10.1002/cyto.b.21110

    Article  PubMed  Google Scholar 

  23. Kagina BM, Mansoor N, Kpamegan EP et al (2015) Qualification of a whole blood intracellular cytokine staining assay to measure mycobacteria-specific CD4 and CD8 T cell immunity by flow cytometry. J Immunol Methods 417:22–33. doi:10.1016/j.jim.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  24. Commandeur S, van Meijgaarden KE, Prins C (2013) An unbiased genome-wide Mycobacterium tuberculosis gene expression approach to discover antigens targeted by human T cells expressed during pulmonary infection. J Immunol 190:1659–1671. doi:10.4049/jimmunol.1201593

    Article  CAS  PubMed  Google Scholar 

  25. Churchyard GJ, Fielding KL, Lewis JJ et al (2014) A Trial of Mass Isoniazid Preventive Therapy for Tuberculosis Control. N Engl J Med 370:301–310. doi:10.1056/NEJMoa1214289

    Article  CAS  PubMed  Google Scholar 

  26. Rozot V, Vigano S, Mazza-Stalder J et al (2013) Mycobacterium tuberculosis-specific CD8 + T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol 43:1568–1577. doi:10.1002/eji.201243262

    Article  CAS  PubMed  Google Scholar 

  27. Day CL, Abrahams DA, Lerumo L et al (2011) Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. J Immunol 187:2222–2232. doi:10.4049/jimmunol.1101122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lewinsohn DA, Heinzel AS, Gardner JM, Zhu L, Alderson MR, Lewinsohn DM (2003) Mycobacterium tuberculosis-specific CD8 + T cells preferentially recognize heavily infected cells. Am J Respir Crit Care Med 168:1346–1352

    Article  PubMed  Google Scholar 

  29. Pollock KM, Whitworth HS, Montamat-Sicotte DJ et al (2013) T-cell immunophenotyping distinguishes active from latent tuberculosis. J Infect Dis 208:952–968. doi:10.1093/infdis/jit265

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the contributions to this research made by the study participants and staff. In particular, they acknowledge Anna Forster for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Sauzullo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauzullo, I., Mengoni, F., Mascia, C. et al. Treatment of latent tuberculosis infection induces changes in multifunctional Mycobacterium tuberculosis-specific CD4+ T cells. Med Microbiol Immunol 205, 37–45 (2016). https://doi.org/10.1007/s00430-015-0424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0424-z

Keywords

Navigation