Skip to main content
Log in

Immunoregulatory cytokine networks: 60 years of learning from murine cytomegalovirus

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Innate immunity defends against infection but also mediates immunoregulatory effects shaping innate and adaptive responses. Studies of murine cytomegalovirus (MCMV) infections have helped elucidate the mechanisms inducing, as well as the elicited soluble and cellular networks contributing to, innate immunity. Specialized receptors are engaged by infection-induced structures to stimulate production of key innate cytokines. These then stimulate cytokine and cellular responses such as activation of natural killer (NK) cells to mediate elevated killing by type 1 interferon (IFN) and/or to produce the pro-inflammatory and antiviral cytokine IFN-γ by interleukin 12 (IL-12). An inter-systemic loop, with IL-6 inducing glucocorticoid release, negatively regulates these early cytokine responses. As infections advance into periods of overlapping innate and adaptive responses, however, the cells are intrinsically conditioned to modify the biological effects of exposure to individual cytokines. Some pathways are turned off to inhibit an existing, whereas others are broadened for acquisition of a new, response function. Remarkably, extended NK cell proliferation during MCMV infection is associated with epigenetic modifications shifting the state of the inhibitory cytokine IL-10 gene from closed to open and results in their becoming equipped to produce this cytokine. When induced, NK cell IL-10 negatively regulates the magnitude of adaptive responses to protect against immune pathology. Thus, innate immunoregulatory cytokine networks are integral to pro-inflammatory and defense functions, but responding cells have the flexibility to undergo cell intrinsic conditioning with changing network characteristics to result in a new negative immunoregulatory function, and consequently, both promote beneficial and limit detrimental immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smith MG (1954) Propagation of salivary gland virus of the mouse in tissue cultures. Proc Soc Exp Biol Med 86(3):435–440

    Article  CAS  PubMed  Google Scholar 

  2. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    Article  CAS  PubMed  Google Scholar 

  3. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384. doi:10.1038/ni.1863

    Article  CAS  PubMed  Google Scholar 

  4. Dalod M, Biron CA (2013) Immunoregulatory cytokine networks discovered and characterized during murine cytomegalovirus infections. In: Reddenhase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to therapy, vol II. Caister Academic Press, Nerfolk, pp 232–258

    Google Scholar 

  5. Krug A, French AR, Barchet W, Fischer JA, Dzionek A, Pingel JT, Orihuela MM, Akira S, Yokoyama WM, Colonna M (2004) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21(1):107–119. doi:10.1016/j.immuni.2004.06.007

    Article  CAS  PubMed  Google Scholar 

  6. Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J, Alexopoulou L, Flavell RA, Beutler B (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 101(10):3516–3521. doi:10.1073/pnas.0400525101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Delale T, Paquin A, Asselin-Paturel C, Dalod M, Brizard G, Bates EE, Kastner P, Chan S, Akira S, Vicari A, Biron CA, Trinchieri G, Briere F (2005) MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-alpha release and initiation of immune responses in vivo. J Immunol 175(10):6723–6732

    Article  CAS  PubMed  Google Scholar 

  8. Zucchini N, Bessou G, Robbins SH, Chasson L, Raper A, Crocker PR, Dalod M (2008) Individual plasmacytoid dendritic cells are major contributors to the production of multiple innate cytokines in an organ-specific manner during viral infection. Int Immunol 20(1):45–56. doi:10.1093/intimm/dxm119

    Article  CAS  PubMed  Google Scholar 

  9. Zucchini N, Bessou G, Traub S, Robbins SH, Uematsu S, Akira S, Alexopoulou L, Dalod M (2008) Cutting edge: overlapping functions of TLR7 and TLR9 for innate defense against a herpesvirus infection. J Immunol 180(9):5799–5803

    Article  CAS  PubMed  Google Scholar 

  10. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791. doi:10.1126/science.1232458

    Article  CAS  PubMed  Google Scholar 

  11. Kanneganti TD (2010) Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 10(10):688–698. doi:10.1038/nri2851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5):395–402. doi:10.1038/ni.1864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Grundy JE, Trapman J, Allan JE, Shellam GR, Melief CJ (1982) Evidence for a protective role of interferon in resistance to murine cytomegalovirus and its control by non-H-2-linked genes. Infect Immun 37(1):143–150

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Chong KT, Gresser I, Mims CA (1983) Interferon as a defence mechanism in mouse cytomegalovirus infection. J Gen Virol 64(Pt 2):461–464

    Article  CAS  PubMed  Google Scholar 

  15. Orange JS, Biron CA (1996) Characterization of early IL-12, IFN-alphabeta, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J Immunol 156(12):4746–4756

    CAS  PubMed  Google Scholar 

  16. Ruzek MC, Miller AH, Opal SM, Pearce BD, Biron CA (1997) Characterization of early cytokine responses and an interleukin (IL)-6-dependent pathway of endogenous glucocorticoid induction during murine cytomegalovirus infection. J Exp Med 185(7):1185–1192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Pien GC, Satoskar AR, Takeda K, Akira S, Biron CA (2000) Cutting edge: selective IL-18 requirements for induction of compartmental IFN-gamma responses during viral infection. J Immunol 165(9):4787–4791

    Article  CAS  PubMed  Google Scholar 

  18. Ruzek MC, Pearce BD, Miller AH, Biron CA (1999) Endogenous glucocorticoids protect against cytokine-mediated lethality during viral infection. J Immunol 162(6):3527–3533

    CAS  PubMed  Google Scholar 

  19. Oakley OR, Garvy BA, Humphreys S, Qureshi MH, Pomeroy C (2008) Increased weight loss with reduced viral replication in interleukin-10 knock-out mice infected with murine cytomegalovirus. Clin Exp Immunol 151(1):155–164. doi:10.1111/j.1365-2249.2007.03533.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tarrio ML, Lee SH, Fragoso MF, Sun HW, Kanno Y, O’Shea JJ, Biron CA (2014) Proliferation conditions promote intrinsic changes in NK cells for an IL-10 response. J Immunol 193(1):354–363. doi:10.4049/jimmunol.1302999

    Article  CAS  PubMed  Google Scholar 

  21. Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N, Dezutter-Dambuyant C, Vicari A, O’Garra A, Biron C, Briere F, Trinchieri G (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2(12):1144–1150. doi:10.1038/ni736

    Article  CAS  PubMed  Google Scholar 

  22. Dalod M, Salazar-Mather TP, Malmgaard L, Lewis C, Asselin-Paturel C, Briere F, Trinchieri G, Biron CA (2002) Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J Exp Med 195(4):517–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Dalod M, Hamilton T, Salomon R, Salazar-Mather TP, Henry SC, Hamilton JD, Biron CA (2003) Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon alpha/beta. J Exp Med 197(7):885–898. doi:10.1084/jem.20021522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Swiecki M, Wang Y, Vermi W, Gilfillan S, Schreiber RD, Colonna M (2011) Type I interferon negatively controls plasmacytoid dendritic cell numbers in vivo. J Exp Med 208(12):2367–2374. doi:10.1084/jem.20110654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hanson LK, Slater JS, Karabekian Z, Virgin HW 4th, Biron CA, Ruzek MC, van Rooijen N, Ciavarra RP, Stenberg RM, Campbell AE (1999) Replication of murine cytomegalovirus in differentiated macrophages as a determinant of viral pathogenesis. J Virol 73(7):5970–5980

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Orange JS, Biron CA (1996) An absolute and restricted requirement for IL-12 in natural killer cell IFN-gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol 156(3):1138–1142

    CAS  PubMed  Google Scholar 

  27. Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, Liew FY, Caligiuri MA, Durbin JE, Biron CA (2002) Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 169(8):4279–4287

    Article  CAS  PubMed  Google Scholar 

  28. Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7):559–568. doi:10.1038/nri2314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Tay CH, Welsh RM (1997) Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J Virol 71(1):267–275

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Loh J, Chu DT, O’Guin AK, Yokoyama WM, Virgin HW (2005) Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. J Virol 79(1):661–667. doi:10.1128/JVI.79.1.661-667.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Sumaria N, van Dommelen SL, Andoniou CE, Smyth MJ, Scalzo AA, Degli-Esposti MA (2009) The roles of interferon-gamma and perforin in antiviral immunity in mice that differ in genetically determined NK-cell-mediated antiviral activity. Immunol Cell Biol 87(7):559–566. doi:10.1038/icb.2009.41

    Article  CAS  PubMed  Google Scholar 

  32. Biron CA, Welsh RM (1982) Blastogenesis of natural killer cells during viral infection in vivo. J Immunol 129(6):2788–2795

    CAS  PubMed  Google Scholar 

  33. Biron CA, Turgiss LR, Welsh RM (1983) Increase in NK cell number and turnover rate during acute viral infection. J Immunol 131(3):1539–1545

    CAS  PubMed  Google Scholar 

  34. Biron CA, Sonnenfeld G, Welsh RM (1984) Interferon induces natural killer cell blastogenesis in vivo. J Leukoc Biol 35(1):31–37

    CAS  PubMed  Google Scholar 

  35. Orange JS, Wang B, Terhorst C, Biron CA (1995) Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 182(4):1045–1056

    Article  CAS  PubMed  Google Scholar 

  36. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795. doi:10.1146/annurev.immunol.15.1.749

    Article  CAS  PubMed  Google Scholar 

  37. Salazar-Mather TP, Hamilton TA, Biron CA (2000) A chemokine-to-cytokine-to-chemokine cascade critical in antiviral defense. J Clin Investig 105(7):985–993. doi:10.1172/JCI9232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Goldszmid RS, Caspar P, Rivollier A, White S, Dzutsev A, Hieny S, Kelsall B, Trinchieri G, Sher A (2012) NK cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 36(6):1047–1059. doi:10.1016/j.immuni.2012.03.026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164):1415–1421

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Sastre A, Biron CA (2006) Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312(5775):879–882. doi:10.1126/science.1125676

    Article  CAS  PubMed  Google Scholar 

  41. van Boxel-Dezaire AH, Rani MR, Stark GR (2006) Complex modulation of cell type-specific signaling in response to type I interferons. Immunity 25(3):361–372. doi:10.1016/j.immuni.2006.08.014

    Article  PubMed  Google Scholar 

  42. Kallal LE, Biron CA (2013) Changing partners at the dance: variations in STAT concentrations for shaping cytokine function and immune responses to viral infections. Jak-Stat 2(1):e23504. doi:10.4161/jkst.23504

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kaplan MH, Sun YL, Hoey T, Grusby MJ (1996) Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382(6587):174–177. doi:10.1038/382174a0

    Article  CAS  PubMed  Google Scholar 

  44. Rogge L, D’Ambrosio D, Biffi M, Penna G, Minetti LJ, Presky DH, Adorini L, Sinigaglia F (1998) The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J Immunol 161(12):6567–6574

    CAS  PubMed  Google Scholar 

  45. Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu A, Gadina M, O’Shea JJ, Biron CA (2002) Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 297(5589):2063–2066. doi:10.1126/science.1074900

    Article  CAS  PubMed  Google Scholar 

  46. Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA (2007) High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells. J Exp Med 204(10):2383–2396. doi:10.1084/jem.20070401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Mack EA, Kallal LE, Demers DA, Biron CA (2011) Type 1 interferon induction of natural killer cell gamma interferon production for defense during lymphocytic choriomeningitis virus infection. mBio 2 (4). doi:10.1128/mBio.00169-11

  48. Chaix J, Tessmer MS, Hoebe K, Fuseri N, Ryffel B, Dalod M, Alexopoulou L, Beutler B, Brossay L, Vivier E, Walzer T (2008) Cutting edge: priming of NK cells by IL-18. J Immunol 181(3):1627–1631

    Article  CAS  PubMed  Google Scholar 

  49. Beutler B, Cerami A (1988) The common mediator of shock, cachexia, and tumor necrosis. Adv Immunol 42:213–231

    Article  CAS  PubMed  Google Scholar 

  50. Trinchieri G (1998) Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol 16(3–4):365–396. doi:10.3109/08830189809043002

    Article  CAS  PubMed  Google Scholar 

  51. Orange JS, Salazar-Mather TP, Opal SM, Biron CA (1997) Mechanisms for virus-induced liver disease: tumor necrosis factor-mediated pathology independent of natural killer and T cells during murine cytomegalovirus infection. J Virol 71(12):9248–9258

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Yokoyama WM, Seaman WE (1993) The Ly-49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells: the NK gene complex. Annu Rev Immunol 11:613–635. doi:10.1146/annurev.iy.11.040193.003145

    Article  CAS  PubMed  Google Scholar 

  53. Vidal SM, Khakoo SI, Biron CA (2011) Natural killer cell responses during viral infections: flexibility and conditioning of innate immunity by experience. Curr Opin Virol 1(6):497–512. doi:10.1016/j.coviro.2011.10.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Jonjic S, Polic B, Krmpotic A (2008) Viral inhibitors of NKG2D ligands: friends or foes of immune surveillance? Eur J Immunol 38(11):2952–2956. doi:10.1002/eji.200838823

    Article  CAS  PubMed  Google Scholar 

  55. Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR (1990) Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med 171(5):1469–1483

    Article  CAS  PubMed  Google Scholar 

  56. Brown MG, Dokun AO, Heusel JW, Smith HR, Beckman DL, Blattenberger EA, Dubbelde CE, Stone LR, Scalzo AA, Yokoyama WM (2001) Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292(5518):934–937. doi:10.1126/science.1060042

    Article  CAS  PubMed  Google Scholar 

  57. Lee SH, Girard S, Macina D, Busa M, Zafer A, Belouchi A, Gros P, Vidal SM (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28(1):42–45. doi:10.1038/88247

    CAS  PubMed  Google Scholar 

  58. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296(5571):1323–1326. doi:10.1126/science.1070884

    Article  CAS  PubMed  Google Scholar 

  59. Dokun AO, Kim S, Smith HR, Kang HS, Chu DT, Yokoyama WM (2001) Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2(10):951–956. doi:10.1038/ni714

    Article  CAS  PubMed  Google Scholar 

  60. Lee SH, Kim KS, Fodil-Cornu N, Vidal SM, Biron CA (2009) Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection. J Exp Med 206(10):2235–2251. doi:10.1084/jem.20082387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181. doi:10.1038/nri2711

    Article  CAS  PubMed  Google Scholar 

  62. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29:71–109. doi:10.1146/annurev-immunol-031210-101312

    Article  CAS  PubMed  Google Scholar 

  63. Mehrotra PT, Donnelly RP, Wong S, Kanegane H, Geremew A, Mostowski HS, Furuke K, Siegel JP, Bloom ET (1998) Production of IL-10 by human natural killer cells stimulated with IL-2 and/or IL-12. J Immunol 160(6):2637–2644

    CAS  PubMed  Google Scholar 

  64. Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, Gapin L, Kronenberg M, Locksley RM (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198(7):1069–1076. doi:10.1084/jem.20030630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. De Maria A, Fogli M, Mazza S, Basso M, Picciotto A, Costa P, Congia S, Mingari MC, Moretta L (2007) Increased natural cytotoxicity receptor expression and relevant IL-10 production in NK cells from chronically infected viremic HCV patients. Eur J Immunol 37(2):445–455. doi:10.1002/eji.200635989

    Article  PubMed  Google Scholar 

  66. Perona-Wright G, Mohrs K, Szaba FM, Kummer LW, Madan R, Karp CL, Johnson LL, Smiley ST, Mohrs M (2009) Systemic but not local infections elicit immunosuppressive IL-10 production by natural killer cells. Cell Host Microbe 6(6):503–512. doi:10.1016/j.chom.2009.11.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Wagage S, John B, Krock BL, Hall AO, Randall LM, Karp CL, Simon MC, Hunter CA (2014) The aryl hydrocarbon receptor promotes IL-10 production by NK cells. J Immunol 192(4):1661–1670. doi:10.4049/jimmunol.1300497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Gett AV, Hodgkin PD (1998) Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc Natl Acad Sci USA 95(16):9488–9493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Denton AE, Russ BE, Doherty PC, Rao S, Turner SJ (2011) Differentiation-dependent functional and epigenetic landscapes for cytokine genes in virus-specific CD8+ T cells. Proc Natl Acad Sci USA 108(37):15306–15311. doi:10.1073/pnas.1112520108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332(6035):1284–1288. doi:10.1126/science.1204351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, Gorbatov R, Sukhova GK, Gerhardt LM, Smyth D, Zavitz CC, Shikatani EA, Parsons M, van Rooijen N, Lin HY, Husain M, Libby P, Nahrendorf M, Weissleder R, Swirski FK (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19(9):1166–1172. doi:10.1038/nm.3258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, Sharifi N, Janssen-Megens EM, Ter Huurne M, Mandoli A, van Schaik T, Ng A, Burden F, Downes K, Frontini M, Kumar V, Giamarellos-Bourboulis EJ, Ouwehand WH, van der Meer JW, Joosten LA, Wijmenga C, Martens JH, Xavier RJ, Logie C, Netea MG, Stunnenberg HG (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345(6204):1251086. doi:10.1126/science.1251086

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work from the Biron laboratory is supported by the National Institutes of Health, USA. The authors thank the many contributors to the advances in knowledge reviewed here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine A. Biron.

Additional information

This article is part of the Special Issue on Cytomegalovirus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biron, C.A., Tarrio, M.L. Immunoregulatory cytokine networks: 60 years of learning from murine cytomegalovirus. Med Microbiol Immunol 204, 345–354 (2015). https://doi.org/10.1007/s00430-015-0412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0412-3

Keywords

Navigation