Skip to main content
Log in

Streptolysin S of Streptococcus anginosus exhibits broad-range hemolytic activity

Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Streptococcus anginosus is a commensal of mucous membranes and an emerging human pathogen. Some strains, including the type strain, display a prominent β-hemolytic phenotype. A gene cluster (sag), encoding a variant of streptolysin S (SLS) has recently been identified as the genetic background for β-hemolysin production in S. anginosus. In this study, we further characterized the hemolytic and cytolytic activity of the S. anginosus hemolysin in comparison with other streptococcal hemolysins. The results indicate that SLS of S. anginosus is a broad-range hemolysin able to lyse erythrocytes of different species, including horse, bovine, rabbit and even chicken. The hemolytic activity is temperature dependent, and a down-regulation of the hemolysin expression is induced in the presence of high glucose levels. Survival assays indicate that in contrast to other streptococcal species, S. anginosus does not require SLS for survival in the presence of human granulocytes. Cross-complementation studies using the sagB and sagD genes of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis demonstrated functional similarities to the S. anginosus SLS. Nevertheless, distinct differences to other streptolysin S variants were noted and provide further insights into the molecular mechanisms of SLS pathogen host interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Laupland KB, Ross T, Church DL, Gregson DB (2006) Population-based surveillance of invasive pyogenic streptococcal infection in a large Canadian region. Clin Microbiol Infect 12(3):224–230. doi:10.1111/j.1469-0691.2005.01345.x

    Article  CAS  PubMed  Google Scholar 

  2. Reissmann S, Friedrichs C, Rajkumari R, Itzek A, Fulde M, Rodloff AC, Brahmadathan KN, Chhatwal GS, Nitsche-Schmitz DP (2010) Contribution of Streptococcus anginosus to infections caused by groups C and G streptococci, southern India. Emerg Infect Dis 16(4):656–663. doi:10.3201/eid1604.090448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Siegman-Igra Y, Azmon Y, Schwartz D (2012) Milleri group streptococcus: a stepchild in the viridans family. Eur J Clin Microbiol Infect Dis 31(9):2453–2459. doi:10.1007/s10096-012-1589-7

    Article  CAS  PubMed  Google Scholar 

  4. Parkins MD, Sibley CD, Surette MG, Rabin HR (2008) The Streptococcus milleri group: an unrecognized cause of disease in cystic fibrosis—a case series and literature review. Pediatr Pulmonol 43(5):490–497. doi:10.1002/ppul.20809

    Article  PubMed  Google Scholar 

  5. Facklam R (2002) What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15(4):613–630

    Article  PubMed Central  PubMed  Google Scholar 

  6. Asam D, Spellerberg B (2014) Molecular pathogenicity of Streptococcus anginosus. Mol Oral Microbiol. doi:10.1111/omi.12056

    PubMed  Google Scholar 

  7. Olson AB, Kent H, Sibley CD, Grinwis ME, Mabon P, Ouellette C, Tyson S, Graham M, Tyler SD, Van Domselaar G, Surette MG, Corbett CR (2013) Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genom 14:895. doi:10.1186/1471-2164-14-895

    Article  Google Scholar 

  8. Asam D, Mauerer S, Walheim E, Spellerberg B (2013) Identification of beta-haemolysin-encoding genes in Streptococcus anginosus. Mol Oral Microbiol 28(4):302–315. doi:10.1111/omi.12026

    Article  CAS  PubMed  Google Scholar 

  9. Tabata A, Nakano K, Ohkura K, Tomoyasu T, Kikuchi K, Whiley RA, Nagamune H (2013) Novel twin streptolysin S-like peptides encoded in the sag operon homologue of beta-hemolytic Streptococcus anginosus. J Bacteriol 195(5):1090–1099. doi:10.1128/JB.01344-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Humar D, Datta V, Bast DJ, Beall B, De Azavedo JC, Nizet V (2002) Streptolysin S and necrotising infections produced by group G streptococcus. Lancet 359(9301):124–129. doi:10.1016/S0140-6736(02)07371-3

    Article  CAS  PubMed  Google Scholar 

  11. Flanagan J, Collin N, Timoney J, Mitchell T, Mumford JA, Chanter N (1998) Characterization of the haemolytic activity of Streptococcus equi. Microb Pathog 24(4):211–221. doi:10.1006/mpat.1997.0190

    Article  CAS  PubMed  Google Scholar 

  12. Fuller JD, Camus AC, Duncan CL, Nizet V, Bast DJ, Thune RL, Low DE, De Azavedo JC (2002) Identification of a streptolysin S-associated gene cluster and its role in the pathogenesis of Streptococcus iniae disease. Infect Immun 70(10):5730–5739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Molloy EM, Cotter PD, Hill C, Mitchell DA, Ross RP (2011) Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 9(9):670–681. doi:10.1038/nrmicro2624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bernheimer AW, Schwartz LL (1964) Lysosomal disruption by bacterial toxins. J Bacteriol 87(5):1100–1104

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Keiser H, Weissmann G, Bernheimer AW (1964) Studies on Lysosomes. Iv. Solubilization of enzymes during mitochondrial swelling and disruption of lysosomes by Streptolysin S and other hemolytic agents. J Cell Biol 22:101–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Taketo Y, Taketo A (1966) Cytolytic effect of streptolysin S complex on Ehrlich ascites tumor cells. J Biochem 60(4):357–362

    CAS  PubMed  Google Scholar 

  17. Hryniewicz W, Pryjma J (1977) Effect of streptolysin S on human and mouse T and B lymphocytes. Infect Immun 16(3):730–733

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Miyoshi-Akiyama T, Takamatsu D, Koyanagi M, Zhao J, Imanishi K, Uchiyama T (2005) Cytocidal effect of Streptococcus pyogenes on mouse neutrophils in vivo and the critical role of streptolysin S. J Infect Dis 192(1):107–116. doi:10.1086/430617

    Article  PubMed  Google Scholar 

  19. Goldmann O, Sastalla I, Wos-Oxley M, Rohde M, Medina E (2009) Streptococcus pyogenes induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway. Cell Microbiol 11(1):138–155. doi:10.1111/j.1462-5822.2008.01245.x

    Article  CAS  PubMed  Google Scholar 

  20. Nagamune H, Ohnishi C, Katsuura A, Fushitani K, Whiley RA, Tsuji A, Matsuda Y (1996) Intermedilysin, a novel cytotoxin specific for human cells secreted by Streptococcus intermedius UNS46 isolated from a human liver abscess. Infect Immun 64(8):3093–3100

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Tabata A, Sato Y, Maya K, Nakano K, Kikuchi K, Whiley RA, Ohkura K, Tomoyasu T, Nagamune H (2014) A streptolysin S homologue is essential for beta-haemolytic Streptococcus constellatus subsp. constellatus cytotoxicity. Microbiology 160(Pt 5):980–991. doi:10.1099/mic.0.075580-0

    Article  CAS  PubMed  Google Scholar 

  22. Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet TIG 11(6):217–218

    Article  CAS  Google Scholar 

  23. Ricci ML, Manganelli R, Berneri C, Orefici G, Pozzi G (1994) Electrotransformation of Streptococcus agalactiae with plasmid DNA. FEMS Microbiol Lett 119(1–2):47–52

    Article  CAS  PubMed  Google Scholar 

  24. Aymanns S, Mauerer S, van Zandbergen G, Wolz C, Spellerberg B (2011) High-level fluorescence labeling of gram-positive pathogens. PLoS ONE 6(6):e19822. doi:10.1371/journal.pone.0019822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Loridan C, Alouf JE (1986) Purification of RNA-core induced streptolysin S, and isolation and haemolytic characteristics of the carrier-free toxin. J Gen Microbiol 132(2):307–315

    CAS  PubMed  Google Scholar 

  26. Esmann L, Idel C, Sarkar A, Hellberg L, Behnen M, Moller S, van Zandbergen G, Klinger M, Kohl J, Bussmeyer U, Solbach W, Laskay T (2010) Phagocytosis of apoptotic cells by neutrophil granulocytes: diminished proinflammatory neutrophil functions in the presence of apoptotic cells. J Immunol 184(1):391–400. doi:10.4049/jimmunol.0900564

    Article  CAS  PubMed  Google Scholar 

  27. Carr A, Sledjeski DD, Podbielski A, Boyle MD, Kreikemeyer B (2001) Similarities between complement-mediated and streptolysin S-mediated hemolysis. J Biol Chem 276(45):41790–41796. doi:10.1074/jbc.M107401200

    Article  CAS  PubMed  Google Scholar 

  28. Betschel SD, Borgia SM, Barg NL, Low DE, De Azavedo JC (1998) Reduced virulence of group A streptococcal Tn916 mutants that do not produce streptolysin S. Infect Immun 66(4):1671–1679

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Lin A, Loughman JA, Zinselmeyer BH, Miller MJ, Caparon MG (2009) Streptolysin S inhibits neutrophil recruitment during the early stages of Streptococcus pyogenes infection. Infect Immun 77(11):5190–5201. doi:10.1128/IAI.00420-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Nagamune H, Whiley RA, Goto T, Inai Y, Maeda T, Hardie JM, Kourai H (2000) Distribution of the intermedilysin gene among the anginosus group streptococci and correlation between intermedilysin production and deep-seated infection with Streptococcus intermedius. J Clin Microbiol 38(1):220–226

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Viscor G, Palomeque J (1982) Method of determining the osmotic fragility curves of erythrocytes in birds. Lab Anim 16(1):48–50

    Article  CAS  PubMed  Google Scholar 

  32. Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11(12):1173–1178. doi:10.1038/nsmb862

    Article  CAS  PubMed  Google Scholar 

  33. Gera K, Le T, Jamin R, Eichenbaum Z, McIver KS (2014) The phosphoenolpyruvate phosphotransferase system in group A Streptococcus acts to reduce streptolysin S activity and lesion severity during soft tissue infection. Infect Immun 82(3):1192–1204. doi:10.1128/IAI.01271-13

    Article  PubMed Central  PubMed  Google Scholar 

  34. Shelburne SA 3rd, Keith D, Horstmann N, Sumby P, Davenport MT, Graviss EA, Brennan RG, Musser JM (2008) A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci USA 105(5):1698–1703. doi:10.1073/pnas.0711767105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Watanabe S, Shimomura Y, Ubukata K, Kirikae T, Miyoshi-Akiyama T (2013) Concomitant regulation of host tissue-destroying virulence factors and carbohydrate metabolism during invasive diseases induced by group g streptococci. J Infect Dis 208(9):1482–1493. doi:10.1093/infdis/jit353

    Article  CAS  PubMed  Google Scholar 

  36. Di Palo B, Rippa V, Santi I, Brettoni C, Muzzi A, Metruccio MM, Grifantini R, Telford JL, Paccani SR, Soriani M (2013) Adaptive response of Group B streptococcus to high glucose conditions: new insights on the CovRS regulation network. PLoS ONE 8(4):e61294. doi:10.1371/journal.pone.0061294

    Article  PubMed Central  PubMed  Google Scholar 

  37. Datta V, Myskowski SM, Kwinn LA, Chiem DN, Varki N, Kansal RG, Kotb M, Nizet V (2005) Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol 56(3):681–695. doi:10.1111/j.1365-2958.2005.04583.x

    Article  CAS  PubMed  Google Scholar 

  38. Haft DH, Basu MK, Mitchell DA (2010) Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. BMC Biol 8:70. doi:10.1186/1741-7007-8-70

    Article  PubMed Central  PubMed  Google Scholar 

  39. Lee SW, Mitchell DA, Markley AL, Hensler ME, Gonzalez D, Wohlrab A, Dorrestein PC, Nizet V, Dixon JE (2008) Discovery of a widely distributed toxin biosynthetic gene cluster. Proc Natl Acad Sci USA 105(15):5879–5884. doi:10.1073/pnas.0801338105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mitchell DA, Lee SW, Pence MA, Markley AL, Limm JD, Nizet V, Dixon JE (2009) Structural and functional dissection of the heterocyclic peptide cytotoxin streptolysin S. J Biol Chem 284(19):13004–13012. doi:10.1074/jbc.M900802200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Maguin E, Prevost H, Ehrlich SD, Gruss A (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol 178(3):931–935

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Trieu-Cuot P, Carlier C, Poyart-Salmeron C, Courvalin P (1990) A pair of mobilizable shuttle vectors conferring resistance to spectinomycin for molecular cloning in Escherichia coli and in gram-positive bacteria. Nucleic Acids Res 18(14):4296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work of Daniela Asam and Barbara Spellerberg was supported by DFG Grant GSC 270 (International Graduate School in Molecular Medicine, Ulm).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Spellerberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asam, D., Mauerer, S. & Spellerberg, B. Streptolysin S of Streptococcus anginosus exhibits broad-range hemolytic activity. Med Microbiol Immunol 204, 227–237 (2015). https://doi.org/10.1007/s00430-014-0363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-014-0363-0

Keywords

Navigation