Skip to main content

Advertisement

Log in

Decreased level of antibodies and cardiac involvement in patients with chronic Chagas heart disease vaccinated with BCG

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Studies indicate that Trypanosoma cruzi is capable of inducing immunological disturbances such as decreased expression of molecules involved in T-cell survival and costimulation for antigen-driven T-cell responses. On the other hand, several reports have described that BCG vaccination induces a T-helper 1-type immune response with protective effects in different pathologies. In this regard, we evaluated whether BCG vaccination coexists with a better clinical and immunological profile of chronic Chagas heart disease (CCHD). We performed a cross-sectional study in T. cruzi seropositive patients categorized according the BCG vaccine background and to the well-established CCHD classification provided by Storino et al. All individuals were subjected to a complete clinical examination. All patients presented detectable levels of autoantibodies anti-p2β, anti-B13, anti-FRA and antiparasite homogenate immunoglobulins, which were unrelated to age and sex distribution or blood pressure values. Comparisons according to BCG vaccination revealed that individuals who had not been vaccinated presented higher values of antibodies, and patients without BCG vaccine had an OR of 6.1 (95 % CI 1.23–29.25, p = 0.02) for globally dilated cardiomyopathy with reduced ejection fraction (Hosmer and Lemeshow test of 5.2 p = 0.73). Our results suggest that BCG vaccination coexists with a better clinical and immunological profile of CCHD, associated with lower cardiac involvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization (2002) Control of Chagas disease: second report of a WHO expert committee. World Health Organ Tech Rep Ser 905:1–109

    Google Scholar 

  2. Organización Panamericana de la salud. Estimación cuantitativa de la enfermedad de Chagas en las Américas. OMS 2006, Montevideo, Uruguay

  3. Marin-Neto JA, Rassi A Jr (2009) Update on Chagas heart disease on the first centenary of its discovery. Rev Esp Cardiol 62(11):1211–1216

    Article  PubMed  Google Scholar 

  4. Gironés N, Fresno M (2003) Etiology of Chagas disease myocarditis: autoimmunity, parasite persistence, or both? Trends Parasitol 19(1):19–22

    Article  PubMed  Google Scholar 

  5. Leon JS, Engman DM (2001) Autoimmunity in Chagas heart disease. Int J Parasitol 31(5–6):555–561

    Article  PubMed  CAS  Google Scholar 

  6. Brener Z, Gazzinelli RT (1997) Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas’ disease. Int Arch Allergy Immunol 114(2):103–110

    Article  PubMed  CAS  Google Scholar 

  7. Soares MB, Pontes-De-Carvalho L, Ribeiro-Dos-Santos R (2001) The pathogenesis of Chagas’ disease: when autoimmune and parasite-specific immune responses meet. An Acad Bras Cienc 73(4):547–559

    Article  PubMed  CAS  Google Scholar 

  8. Coura JR, Viñas PA (2010) Chagas disease: a new worldwide challenge. Nature 465(7301):S6–S7

    Article  PubMed  Google Scholar 

  9. Coura JR, Borges-Pereira J (2010) Chagas disease: 100 years after its discovery. A systemic review. Acta Trop 115(1–2):5–13

    Article  PubMed  Google Scholar 

  10. Cunha-Neto E, Teixeira PC, Nogueira LG, Kalil J (2011) Autoimmunity. Adv Parasitol 76:129–152

    Article  PubMed  Google Scholar 

  11. Vicco MH, Ferini F, Rodeles L, Cardona P, Bontempi I, Lioi S et al (2013) Assessment of cross-reactive h-pathogen antibodies in patients with different stages of chronic Chagas disease. Rev Esp Cardiol. doi:10.1016/j.recesp.2013.05.028

    PubMed  Google Scholar 

  12. Cremaschi G, Fernandez M, Gorelik G, Goin J, Fossati C, Zwirner N et al (2004) Modulatory effects on myocardial physiology induced by an anti-monoclonal antibody involve recognition of major antigenic epitopes from β-adrenergic and M-muscarinic cholinergic receptors without requiring receptor cross-linking. J Neuroimmunol 153(1–2):99–107

    Article  PubMed  CAS  Google Scholar 

  13. Joensen L, Borda E, Kohout T, Perry S, García G, Sterin-Borda L (2003) Trypanosoma cruzi antigen that interacts with the β1-adrenergic receptor and modifies myocardial contractile activity. Mol Biochem Parasitol 127(2):169–177

    Article  PubMed  CAS  Google Scholar 

  14. Labovsky V, Smulski CR, Gómez K, Levy G, Levin MJ (2007) Anti-beta1-adrenergic receptor autoantibodies in patients with Chagas heart disease. Clin Exp Immunol 148(3):440–449

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Grippo V, Niborski LL, Gomez KA, Levin MJ (2011) Human recombinant antibodies against Trypanosoma cruzi ribosomal P2 β protein. Parasitology 18:1–12

    Google Scholar 

  16. Levy GV, Tasso LM, Longhi SA, Rivello HG, Kytö V, Saukko P et al (2011) Antibodies against the Trypanosoma cruzi ribosomal P proteins induce apoptosis in HL-1 cardiac cells. Int J Parasitol 41(6):635–644

    Article  PubMed  CAS  Google Scholar 

  17. Cunha-Neto E, Coelho V, Guilherme L, Fiorelli A, Stolf N, Kalil J (1996) Autoimmunity in Chagas’ disease. Identification of cardiac myosin-B13 Trypanosoma cruzi protein crossreactive T cell clones in heart lesions of a chronic Chagas’ cardiomyopathy patient. J Clin Invest 98(8):1709–1712

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Abel LC, Kalil J, Cunha Neto E (1997) Molecular mimicry between cardiac myosin and Trypanosoma cruzi antigen B13: identification of a B13-driven human T cell clone that recognizes cardiac myosin. Braz J Med Biol Res 30(11):1305–1308

    Article  PubMed  CAS  Google Scholar 

  19. Kierszenbaum F, Sztein MB (1992) Trypanosoma cruzi suppresses the expression of the p75 chain of interleukin-2 receptors on the surface of activated helper and cytotoxic human lymphocytes. Immunology 75:546–549

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Sztein MB, Kierszenbaum F (1992) Suppression by Trypanosoma cruzi of T-cell receptor expression by activated human lymphocytes. Immunology 77:277–283

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Kierszenbaum F, Moretti E, Sztein MB (1991) Trypanosoma cruzi induces suppression of DNA synthesis and inhibits expression of interleukin-2 receptors by stimulated human B lymphocytes. Immunology 74:317–322

    PubMed Central  PubMed  CAS  Google Scholar 

  22. El-Zein M, Parent ME, Benedetti A, Rousseau MC (2010) Does BCG vaccination protect against the development of childhood asthma? A systematic review and meta-analysis of epidemiological studies. Int J Epidemiol 39(2):469–486

    Article  PubMed  Google Scholar 

  23. Thuc NV, Abel L, Lap VD, Oberti J, Lagrange PH (1994) Protective effect of BCG against leprosy and its subtypes: a case-control study in Southern Vietnam. Int J Lepr 62:532–538

    CAS  Google Scholar 

  24. Krone B, Kölmel KF, Henz BM, Grange JM (2005) Protection against melanoma by vaccination with Bacille Calmette–Guérin (BCG) and/or vaccinia: an epidemiology-based hypothesis on the nature of a melanoma risk factor and its immunological control. Eur J Cancer 41:104–117

    Article  PubMed  CAS  Google Scholar 

  25. Roth A, Jensen H, Garly M, Lisse IM, Sodemann M, Aaby P (2004) Low birth weight infants and Calmette–Guerin bacillus vaccination at birth: community study from Guinea-Bissau. Pediatr Infect Dis J 23:544–550

    Article  PubMed  Google Scholar 

  26. Stensballe LG, Nante E, Jensen IP, Kofoed PE, Poulsen A, Jensen H, Newport M, Marchant A, Aaby A (2005) Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls. Community based case-control study. Vaccine 23:1251–1257

    Article  PubMed  CAS  Google Scholar 

  27. Bertelli MS, Alcantara A, Brener Z (1981) BCG-induced resistance in Trypanosoma cruzi experimental infections. Tropenmed Parasitol 32(2):93–96

    PubMed  CAS  Google Scholar 

  28. Marcipar S, Lagier C. Advances in serological diagnosis of Chagas’ disease by using recombinant proteins. In: Rodriguez-Morales A (ed) Current topics in tropical medicine. ISBN: 978-953-51-0274-8, InTech, http://www.intechopen.com/books/current-topics-in-tropicalmedicine/advances-in-serological-diagnosis-of-Chagas-disease-by-using-recombinant-proteins

  29. Floyd S, Ponnighaus JM, Bliss L, Warndorff DK, Kasunga A, Mogha P et al (2000) BCG scars in northern Malawi: sensitivity and repeatability of scar reading, and factors affecting scar size. Int J Tuberc Lung Dis 4(12):1133–1142

    PubMed  CAS  Google Scholar 

  30. Storino R, Schapachnik E, Barousee J, Leguizamón Palumbo J, Manigot D, De Rosa M et al (1985) Clasificación clínica de la miocardiopatía chagásica crónica e historia natural. Bol Acad Nac de Medicina (Bs As) 63:160

    Google Scholar 

  31. Acquatella H (2007) Echocardiography in Chagas heart disease. Circulation 115(9):1124–1131

    Article  PubMed  Google Scholar 

  32. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33(14):1787–1847

    Article  PubMed  Google Scholar 

  33. Rassi A Jr, Rassi A, Little WC, Xavier SS, Rassi SG, Rassi AG et al (2006) Development and validation of a risk score for predicting death in Chagas’ heart disease. N Engl J Med 355(8):799–808

    Article  PubMed  CAS  Google Scholar 

  34. Barbosa MM, Nunes MC (2012) Risk stratification in chagas disease. Rev Esp Cardiol (Engl Ed) 65(Suppl 2):17–21

    Article  Google Scholar 

  35. Marcipar IS, Roodveldt C, Corradi G, Cabeza ML, Brito ME, Winter LM et al (2005) Use of full-length recombinant calflagin and its c fragment for improvement of diagnosis of Trypanosoma cruzi infection. J Clin Microbiol 43(11):5498–5503

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Camussone C, Gonzalez V, Belluzo MS, Pujato N, Ribone ME, Lagier CM et al (2009) Comparison of recombinant Trypanosoma cruzi peptide mixtures versus multiepitope chimeric proteins as sensitizing antigens for immunodiagnosis. Clin Vaccine Immunol 16(6):899–905

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Tijssen P (1985) Processing of data and reporting of results of enzymeimmunoassays. In: Practice and theory of enzymeimmunoassays. Laboratory techniques in biochemistry and molecular biology, 15. Amsterdam, Elsevier, pp. 385–421

  38. Wright PF, Nilsson E, Van Rooij EM, Lelenta M, Jeggo MH (1993) Standardisation and validation of enzyme-linked immunosorbent assay techniques for the detection of antibody in infectious disease diagnosis. Rev Sci Tech 12(2):435–450

    PubMed  CAS  Google Scholar 

  39. Vicco MH, Pujato N, Bontempi I, Rodeles L, Marcipar I, Bottasso O. Increased levels of anti-p2β antibodies and decreased cardiac involvement in patients with progressive chronic Chagas heart disease undergoing β1 selective antagonist treatment. Can J Cardiol (in press)

  40. Grange J, Bottasso O, Stanford C, Stanford J (2008) The use of mycobacterial adjuvant-based agents for immunotherapy of cancer. Vaccine 26(39):4984–4990

    Article  PubMed  CAS  Google Scholar 

  41. Madura Larsen J, Benn CS, Fillie Y, van der Kleij D, Aaby P, Yazdanbakhsh M (2007) BCG stimulated dendritic cells induce an interleukin-10 producing T-cell population with no T helper 1 or T helper 2 bias in vitro. Immunology 121(2):276–282

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Marchant A, Goetghebuer T, Ota MO, Wolfe I, Ceesay SJ, De Groote D et al (1999) Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette–Guérin vaccination. J Immunol 163:2249–2255

    PubMed  CAS  Google Scholar 

  43. Stanford JL (1989) Immunotherapy for leprosy and tuberculosis en: progress in drug research Vl. Birkhauser Verlag-Basel 33:415–447

  44. Kristensen I, Aaby P, Jensen H (2000) Routine vaccinations and child survival: follow up study in Guinea-Bissau. West Africa BMJ 321(7274):1435–1438

    CAS  Google Scholar 

  45. Ota MO, Vekemans J, Schlegel-Haueter SE, Fielding K, Sanneh M, Kidd M et al (2002) Influence of Mycobacterium bovis bacillus Calmette–Guerin on antibody and cytokine responses to human neonatal vaccination. J Immunol 168(2):919–925

    Article  PubMed  CAS  Google Scholar 

  46. Fontanella GH, Pascutti MF, Daurelio L, Perez AR, Nocito AL, Wojdyla D et al (2007) Improved outcome of Trypanosoma cruzi infection in rats following treatment in early life with suspensions of heat-killed environmental Actinomycetales. Vaccine 25:3492–3500

    Article  PubMed  CAS  Google Scholar 

  47. De Arruda Hinds LB, Alexandre-Moreira MS, Decoté-Ricardo D, Nunes MP, Peçanha LM (2001) Increased immunoglobulin secretion by B lymphocytes from Trypanosoma cruzi infected mice after B lymphocytes-natural killer cell interaction. Parasite Immunol 23(11):581–586

    Article  PubMed  Google Scholar 

  48. Morrot A, de Albuquerque Barreto J, Berbert LR, de Carvalho Pinto CE, de Meis J, Savino W (2012) Dynamics of lymphocyte populations during Trypanosoma cruzi infection: from thymocyte depletion to differential cell expansion/contraction in peripheral lymphoid organs. J Trop Med 2012:747185

    Article  PubMed Central  PubMed  Google Scholar 

  49. Majumder S, Kierszenbaum F (1995) Trypanosoma cruzi immunosuppressive factor decreases the interleukin-2 mRNA level in cultured normal activated human lymphocytes. Infect Immun 63(11):4546–4549

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Hulsebos LH, Choromanski L, Kuhn RE (1989) The effect of interleukin-2 on parasitemia and myocarditis in experimental Chagas’ disease. J Protozool 36(3):293–298

    Article  PubMed  CAS  Google Scholar 

  51. Gaffen SL, Liu KD (2004) Overview of interleukin-2 function, production and clinical applications. Cytokine 28(3):109–123

    Article  PubMed  CAS  Google Scholar 

  52. Briceño L, Mosca W (1996) Defective production of interleukin 2 in patients with Chagas’ disease. Purified IL-2 augments in vitro response in patients with chagasic cardiomyopathy. Mem Inst Oswaldo Cruz 91(5):601–607

    Article  PubMed  Google Scholar 

  53. Hanekom WA (2005) The immune response to BCG vaccination of newborns. Ann N Y Acad Sci 1062:69–78

    Article  PubMed  CAS  Google Scholar 

  54. Weir RE, Gorak-Stolinska P, Floyd S, Lalor MK, Stenson S, Branson K et al (2008) Persistence of the immune response induced by BCG vaccination. BMC Infect Dis 25(8):9

    Article  CAS  Google Scholar 

  55. Vicco MH, Bontempi I, Ortiz S, Solari A, Bottasso OA, Marcipar I (2012) Chronic chagas disease with cardiodigestive involvement and the TcVI infective form of Trypanosoma cruzi. A case report. Parasitol Int 61(4):735–737

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

M.H.V and I.B are research fellows of the National Scientific and Technical Research Council (CONICET). I.S.M and O.B. are research career members of CONICET.

Conflict of interest

These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation. There was no grant support or conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Hernán Vicco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicco, M.H., Bontempi, I.A., Rodeles, L. et al. Decreased level of antibodies and cardiac involvement in patients with chronic Chagas heart disease vaccinated with BCG. Med Microbiol Immunol 203, 133–139 (2014). https://doi.org/10.1007/s00430-013-0326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-013-0326-x

Keywords

Navigation