Medical Microbiology and Immunology

, Volume 203, Issue 1, pp 1–12 | Cite as

ArtR, a novel sRNA of Staphylococcus aureus, regulates α-toxin expression by targeting the 5′ UTR of sarT mRNA

  • Ting Xue
  • Xu Zhang
  • Haipeng Sun
  • Baolin SunEmail author
Original Investigation


Recent studies point to the importance of small-noncoding RNAs (sRNAs) in bacterial virulence control. In Staphylococcus aureus, functional dissections of sRNAs are limited to RNA III, SprD, RsaE, SprA1, and SSR42 only. Here, we report the identification and functional analyses of a novel sRNA, which we have designated ArtR. Our data show that the AgrA protein can bind to the artR promoter and repress artR transcription, suggesting that, after RNA III, ArtR is the second sRNA regulated by AgrA. Furthermore, ArtR is unique in S. aureus and involved in virulence regulation by activating α-toxin expression. ArtR promotes the degradation of sarT mRNA by RNase III and arrests the translation of SarT by direct binding to the 5′ untranslated region of the sarT mRNA, suggesting that the activation of ArtR on the α-toxin expression was through SarT. This study reveals another kind of staphylococcal regulatory small RNA that plays a role in virulence control. It also indicates the diversity of small RNA-target mRNA interactions and how these multiple interactions can mediate virulence regulation in this pathogen.


Staphylococcus aureus sRNA AgrA α-Toxin SarT 



We thank the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) for providing the bacterial strains. This work was supported by the National Natural Science Foundation of China (31200107, 31021061).

Supplementary material

430_2013_307_MOESM1_ESM.doc (30 kb)
Supplementary material 1 (DOC 31 kb)
430_2013_307_MOESM2_ESM.tif (1.7 mb)
Supplementary material 2 (TIFF 1745 kb)
430_2013_307_MOESM3_ESM.tif (342 kb)
Supplementary material 3 (TIFF 341 kb)
430_2013_307_MOESM4_ESM.tif (1.6 mb)
Supplementary material 4 (TIFF 1620 kb)
430_2013_307_MOESM5_ESM.tif (541 kb)
Supplementary material 5 (TIFF 541 kb)
430_2013_307_MOESM6_ESM.doc (61 kb)
Supplementary material 6 (DOC 61 kb)
430_2013_307_MOESM7_ESM.tif (1.6 mb)
Supplementary material 7 (TIFF 1614 kb)


  1. 1.
    Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton JCD, Vogel J (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. Plos Genet 4(8). doi: 10.1371/journal.pgen.1000163
  2. 2.
    Thomason MK, Storz G (2010) Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 44:167–188. doi: 10.1146/annurev-genet-102209-163523 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Storz G, Waters LS (2009) Regulatory RNAs in bacteria. Cell 136(4):615–628. doi: 10.1016/j.cell.2009.01.043 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Altuvia S (2007) Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol 10(3):257–261. doi: 10.1016/j.mib.2007.05.003 PubMedCrossRefGoogle Scholar
  5. 5.
    Livny J, Teonadi H, Livny M, Waldor MK (2008) High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. Plos One 3(9). doi: 10.1371/Journal.Pone.0003197
  6. 6.
    Thomason MK, Storz G (2010) Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 44:167–188. doi: 10.1146/annurev-genet-102209-163523 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Liu MY, Gui GJ, Wei BD, Preston JF, Oakford L, Yuksel U, Giedroc DP, Romeo T (1997) The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 272(28):17502–17510PubMedCrossRefGoogle Scholar
  8. 8.
    Altuvia S, Padalon-Brauch G, Hershberg R, Elgrably-Weiss M, Baruch K, Rosenshine I, Margalit H (2008) Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res 36(6):1913–1927. doi: 10.1093/nar/gkn050 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Regnault B, Coppee JY, Lecuit M, Johansson J, Cossart P (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459(7249):950–956. doi: 10.1038/nature08080 PubMedCrossRefGoogle Scholar
  10. 10.
    Opdyke JA, Kang JG, Storz G (2004) GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 186(20):6698–6705. doi: 10.1128/Jb.186.20.6698-6705.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Duhring U, Axmann IM, Hess WR, Wilde A (2006) An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci USA 103(18):7054–7058. doi: 10.1073/pnas.0600927103 PubMedCrossRefGoogle Scholar
  12. 12.
    Andre G, Even S, Putzer H, Burguiere P, Croux C, Danchin A, Martin-Verstraete I, Soutourina O (2008) S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum. Nucleic Acids Res 36(18):5955–5969. doi: 10.1093/Nar/Gkn601 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Lee EJ, Groisman EA (2010) An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol Microbiol 76(4):1020–1033. doi: 10.1111/j.1365-2958.2010.07161.x PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Vogel J, Papenfort K (2010) Regulatory RNA in bacterial pathogens. Cell Host Microbe 8(1):116–127. doi: 10.1016/j.chom.2010.06.008 PubMedCrossRefGoogle Scholar
  15. 15.
    Vogel J, Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, Stadler PF (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464(7286):250–255. doi: 10.1038/nature08756 PubMedCrossRefGoogle Scholar
  16. 16.
    Wai SN, Song T, Mika F, Lindmark B, Liu Z, Schild S, Bishop A, Zhu J, Camilli A, Johansson J, Vogel J (2008) A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol Microbiol 70(1):100–111. doi: 10.1111/j.1365-2958.2008.06392.x PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A, Johansson J (2010) RNAs: regulators of bacterial virulence. Nat Rev Microbiol 8(12):857–866. doi: 10.1038/nrmicro2457 PubMedCrossRefGoogle Scholar
  18. 18.
    Henkin TM (2008) Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev 22(24):3383–3390. doi: 10.1101/gad.1747308 PubMedCrossRefGoogle Scholar
  19. 19.
    Blot S, Vandewoude K, Colardyn F (1998) Staphylococcus aureus infections. N Engl J Med 339 (27):2025–2026 (author reply 2026–2027)Google Scholar
  20. 20.
    Abrahamian FM, Moran GJ (2007) Methicillin-resistant Staphylococcus aureus infections. N Engl J Med 357(20):2090. doi: 10.1056/NEJMc072407 (author reply 2090)
  21. 21.
    Cheung AL, Bayer AS, Zhang G, Gresham H, Xiong YQ (2004) Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol 40(1):1–9PubMedCrossRefGoogle Scholar
  22. 22.
    Bronner S, Monteil H, Prevost G (2004) Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28(2):183–200. doi: 10.1016/j.femsre.2003.09.003 PubMedCrossRefGoogle Scholar
  23. 23.
    Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48(6):1429–1449PubMedCrossRefGoogle Scholar
  24. 24.
    Morfeldt E, Taylor D, von Gabain A, Arvidson S (1995) Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14(18):4569–4577PubMedGoogle Scholar
  25. 25.
    Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T, Namane A, Lina G, Etienne J, Ehresmann B, Ehresmann C, Jacquier A, Vandenesch F, Romby P (2005) Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J 24(4):824–835. doi: 10.1038/sj.emboj.7600572 PubMedCrossRefGoogle Scholar
  26. 26.
    Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby P (2007) Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21(11):1353–1366. doi: 10.1101/gad.423507 PubMedCrossRefGoogle Scholar
  27. 27.
    Chevalier C, Boisset S, Romilly C, Masquida B, Fechter P, Geissmann T, Vandenesch F, Romby P (2010) Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation. PLoS Pathog 6(3):e1000809. doi: 10.1371/journal.ppat.1000809 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Pichon C, Felden B (2005) Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains (vol 102, p 14249, 2005). Proc Nat Acad Sci USA 102(46):16905–16905. doi: 10.1073/pnas.0503838102
  29. 29.
    Geissmann T, Chevalier C, Cros MJ, Boisset S, Fechter P, Noirot C, Schrenzel J, Francois P, Vandenesch F, Gaspin C, Romby P (2009) A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res. doi: 10.1093/nar/gkp668 PubMedCentralPubMedGoogle Scholar
  30. 30.
    Abu-Qatouseh LF, Chinni SV, Seggewiss J, Proctor RA, Brosius J, Rozhdestvensky TS, Peters G, von Eiff C, Becker K (2010) Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J Mol Med 88(6):565–575. doi: 10.1007/s00109-010-0597-2 PubMedCrossRefGoogle Scholar
  31. 31.
    Bohn C, Rigoulay C, Chabelskaya S, Sharma CM, Marchais A, Skorski P, Borezee-Durant E, Barbet R, Jacquet E, Jacq A, Gautheret D, Felden B, Vogel J, Bouloc P (2010) Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res 38(19):6620–6636. doi: 10.1093/Nar/Gkq462 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Beaume M, Hernandez D, Farinelli L, Deluen C, Linder P, Gaspin C, Romby P, Schrenzel J, Francois P (2010) Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLoS ONE 5(5):e10725. doi: 10.1371/journal.pone.0010725 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Vogel J, Sharma CM (2009) Experimental approaches for the discovery anal characterization of regulatory small RNA. Curr Opin Microbiol 12(5):536–546. doi: 10.1016/j.mib.2009.07.006 PubMedCrossRefGoogle Scholar
  34. 34.
    Beaume M, Hernandez D, Francois P, Schrenzel J (2010) New approaches for functional genomic studies in staphylococci. Int J Med Microbiol 300(2–3):88–97. doi: 10.1016/j.ijmm.2009.11.001 PubMedCrossRefGoogle Scholar
  35. 35.
    Anderson KL, Dunman PM (2009) Messenger RNA turnover processes in Escherichia coli, Bacillus subtilis, and emerging studies in Staphylococcus aureus. Int J Microbiol 2009:525491. doi: 10.1155/2009/525491 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Chabelskaya S, Gaillot O, Felden B (2010) A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immune-evasion molecule. Plos Pathog 6(6). doi: 10.1371/journal.ppat.1000927
  37. 37.
    Sayed N, Jousselin A, Felden B (2012) A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide. Nat Struct Mol Biol 19(1):105–112. doi: 10.1038/nsmb.2193 CrossRefGoogle Scholar
  38. 38.
    Morrison JM, Miller EW, Benson MA, Alonzo F, Yoong P, Torres VJ, Hinrichs SH, Dunman PM (2012) Characterization of SSR42, a novel virulence factor regulatory RNA that contributes to the pathogenesis of a Staphylococcus aureus USA300 representative. J Bacteriol 194(11):2924–2938. doi: 10.1128/Jb.06708-11 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Novick RP (1991) Genetic systems in staphylococci. Methods Enzymol 204:587–636PubMedCrossRefGoogle Scholar
  40. 40.
    Bruckner R (1997) Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol Lett 151(1):1–8PubMedCrossRefGoogle Scholar
  41. 41.
    Wolz C, Goerke C, Landmann R, Zimmerli W, Fluckiger U (2002) Transcription of clumping factor A in attached and unattached Staphylococcus aureus in vitro and during device-related infection. Infect Immun 70(6):2758–2762. doi: 10.1128/Iai.70.6.2758-2762.2002 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EGH, Margalit H, Altuvia S (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11(12):941–950PubMedCrossRefGoogle Scholar
  43. 43.
    Fournier B, Klier A, Rapoport G (2001) The two-component system ArlS–ArlR is a regulator of virulence gene expression in Staphylococcus aureus. Mol Microbiol 41(1):247–261PubMedCrossRefGoogle Scholar
  44. 44.
    Chevalier C, Huntzinger E, Fechter P, Boisset S, Vandenesch F, Romby P, Geissmann T (2008) Staphylococcus aureus endoribonuclease III purification and properties. Methods Enzymol 447:309–327. doi: 10.1016/S0076-6879(08)02216-7 PubMedCrossRefGoogle Scholar
  45. 45.
    Zhao L, Xue T, Shang F, Sun H, Sun B (2010) Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun 78(8):3506–3515. doi: 10.1128/IAI.00131-10 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Koenig RL, Ray JL, Maleki SJ, Smeltzer MS, Hurlburt BK (2004) Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J Bacteriol 186(22):7549–7555. doi: 10.1128/JB.186.22.7549-7555.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Wakeman CA, Ramesh A, Winkler WC (2009) Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs. J Mol Biol 392(3):723–735. doi: 10.1016/j.jmb.2009.07.033 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth B, Vandenesch F, Moghazeh S (1995) The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248(4):446–458PubMedCrossRefGoogle Scholar
  49. 49.
    Li D, Cheung A (2008) Repression of hla by rot is dependent on sae in Staphylococcus aureus. Infect Immun 76(3):1068–1075. doi: 10.1128/IAI.01069-07 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Xiong YQ, Willard J, Yeaman MR, Cheung AL, Bayer AS (2006) Regulation of Staphylococcus aureus alpha-toxin gene (hla) expression by agr, sarA, and sae in vitro and in experimental infective endocarditis. J Infect Dis 194(9):1267–1275. doi: 10.1086/508210 PubMedCrossRefGoogle Scholar
  51. 51.
    Cluzel ME, Zanella-Cleon I, Cozzone AJ, Futterer K, Duclos B, Molle V (2010) The Staphylococcus aureus autoinducer-2 synthase LuxS is regulated by Ser/Thr phosphorylation. J Bacteriol 192(23):6295–6301. doi: 10.1128/JB.00853-10 PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Frees D, Qazi SN, Hill PJ, Ingmer H (2003) Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 48(6):1565–1578PubMedCrossRefGoogle Scholar
  53. 53.
    Ji X (2008) The mechanism of RNase III action: how dicer dices. Curr Top Microbiol Immunol 320:99–116PubMedGoogle Scholar
  54. 54.
    Tsui HC, Feng G, Winkler ME (1997) Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J Bacteriol 179(23):7476–7487PubMedCentralPubMedGoogle Scholar
  55. 55.
    Hajnsdorf E, Regnier P (2000) Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I. Proc Natl Acad Sci USA 97(4):1501–1505. doi: 10.1073/pnas.040549897 PubMedCrossRefGoogle Scholar
  56. 56.
    Le Derout J, Folichon M, Briani F, Deho G, Regnier P, Hajnsdorf E (2003) Hfq affects the length and the frequency of short oligo(A) tails at the 3′ end of Escherichia coli rpsO mRNAs. Nucleic Acids Res 31(14):4017–4023PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Vytvytska O, Moll I, Kaberdin VR, von Gabain A, Blasi U (2000) Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 14(9):1109–1118PubMedGoogle Scholar
  58. 58.
    Queck SY, Jameson-Lee M, Villaruz AE, Bach TH, Khan BA, Sturdevant DE, Ricklefs SM, Li M, Otto M (2008) RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell 32(1):150–158. doi: 10.1016/j.molcel.2008.08.005 PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Schmidt KA, Manna AC, Gill S, Cheung AL (2001) SarT, a repressor of alpha-hemolysin in Staphylococcus aureus. Infect Immun 69(8):4749–4758. doi: 10.1128/IAI.69.8.4749-4758.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Geisinger E, Adhikari RP, Jin R, Ross HF, Novick RP (2006) Inhibition of rot translation by RNAIII, a key feature of agr function. Mol Microbiol 61(4):1038–1048. doi: 10.1111/j.1365-2958.2006.05292.x PubMedCrossRefGoogle Scholar
  61. 61.
    Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S, Biham O, Margalit H (2007) Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol Syst Biol 3. doi: 10.1038/Msb4100181
  62. 62.
    Wassarman KM (2002) Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell 109(2):141–144PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang AX, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50(4):1111–1124. doi: 10.1046/j.1365-2958.2003.03734.x PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G (2002) The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9(1):11–22PubMedCrossRefGoogle Scholar
  65. 65.
    Doherty N, Holden MT, Qazi SN, Williams P, Winzer K (2006) Functional analysis of luxS in Staphylococcus aureus reveals a role in metabolism but not quorum sensing. J Bacteriol 188(8):2885–2897PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Xue T, You Y, Hong D, Sun H, Sun B (2011) The Staphylococcus aureus KdpDE two-component system couples extracellular K + sensing and Agr signaling to infection programming. Infect Immun 79(6):2154–2167. doi: 10.1128/IAI.01180-10 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations