Skip to main content

Advertisement

Log in

Lower nasopharyngeal epithelial cell repair and diminished innate inflammation responses contribute to the onset of acute otitis media in otitis-prone children

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

About 30 % of young children experience excessive, frequent episodes of middle ear infection and are classified as acute otitis media prone (OP). Streptococcus pneumoniae (Spn) is a predominant otopathogen in OP and non-OP (NOP) children. The pathogenesis of middle ear infection involves otopathogen nasopharyngeal (NP) colonization followed by an upper respiratory viral infection that modifies the NP environment to allow a sufficient inoculum of bacteria to reflux via the Eustachian tube into the middle ear space. Here, we analyzed the NP mucosal repair response between age-matched stringently defined OP (sOP) and NOP children who progressed to middle ear infection caused by Spn. We found lower epidermal growth factor, epidermal growth factor receptor, and angiogenin cytokine concentrations in nasal washes of sOP compared with NOP children. Despite higher expression of TLR2/4 transcript expression in nasal epithelium and in polymorphonuclear cells present in nasal secretions in sOP children, sOP children had lower expression of proinflammatory cytokines such as IL-6 and IL-8 in the NP. Chemotaxis-associated cytokine expression at onset of AOM in sOP children was also lower compared with NOP children, possibly indicating a lower capacity to signal the innate immune system. We conclude that lower epithelial cell repair responses during viral infection in the NP combined with diminished innate inflammatory responses potentiate Spn pathogenesis in the sOP child.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pelton SI, Leibovitz E (2009) Recent advances in otitis media. Pediatr Infect Dis J 28(10 Suppl):S133–S137

    PubMed  Google Scholar 

  2. Leibovitz E, Broides A, Greenberg D, Newman N (2010) Current management of pediatric acute otitis media. Expert Rev Anti Infect Ther 8(2):151–161

    Article  PubMed  Google Scholar 

  3. Pichichero ME, Casey JR, Hoberman A, Schwartz R (2008) Pathogens causing recurrent and difficult-to-treat acute otitis media, 2003–2006. Clin Pediatr 47(9):901–906

    Article  Google Scholar 

  4. Pichichero ME, Casey JR (2007) Evolving microbiology and molecular epidemiology of acute otitis media in the pneumococcal conjugate vaccine era. Pediatr Infect Dis J 26(10 Suppl):S12–S16

    PubMed  Google Scholar 

  5. Principi N, Baggi E, Esposito S (2012) Prevention of acute otitis media using currently available vaccines. Future Microbiol 7(4):457–465

    Article  PubMed  CAS  Google Scholar 

  6. Fireman P (1997) Otitis media and eustachian tube dysfunction: connection to allergic rhinitis. J Allergy Clin Immunol 99(2):S787–S797

    Article  PubMed  CAS  Google Scholar 

  7. Pettigrew MM, Gent JF, Pyles RB, Miller AL, Nokso-Koivisto J, Chonmaitree T (2011) Viral-bacterial interactions and risk of acute otitis media complicating upper respiratory tract infection. J Clin Microbiol 49(11):3750–3755

    Article  PubMed  Google Scholar 

  8. Sharma SK, Casey JR, Pichichero ME (2011) Reduced memory CD4+ T-cell generation in the circulation of young children may contribute to the otitis-prone condition. J Infect Dis 204(4):645–653

    Article  PubMed  CAS  Google Scholar 

  9. Kaur R, Casey JR, Pichichero ME (2011) Serum antibody response to five Streptococcus pneumoniae proteins during acute otitis media in otitis-prone and non-otitis-prone children. Pediatr Infect Dis J 30(8):645–650

    Article  PubMed  Google Scholar 

  10. Casey JR, Almundevar T, Pichichero ME (2013) Reducing the frequency of acute otitis media by individualized care (in press). doi:10.1097/INF.0b013e3182862b57

  11. Kaur R, Casey JR, Pichichero ME (2011) Serum antibody response to three non-type able Haemophilus influenzae outer membrane proteins during acute otitis media and nasopharyngeal colonization in otitis prone and non-otitis prone children. Vaccine 29(5):1023–1028

    Article  PubMed  CAS  Google Scholar 

  12. Sharma SK, Casey JR, Pichichero ME (2012) Reduced serum IgG responses to pneumococcal antigens in otitis-prone children may be due to poor memory B-cell generation. J Infect Dis 205(8):1225–1229

    Article  PubMed  CAS  Google Scholar 

  13. McCullers JA (2006) Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev 19(3):571–582

    Article  PubMed  CAS  Google Scholar 

  14. Avadhanula V, Rodriguez CA, Devincenzo JP, Wang Y, Webby RJ, Ulett GC, Adderson EE (2006) Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species—and cell type-dependent manner. J Virol 80(4):1629–1636

    Article  PubMed  CAS  Google Scholar 

  15. Hament JM, Aerts PC, Fleer A, Van Dijk H, Harmsen T, Kimpen JL, Wolfs TF (2004) Enhanced adherence of Streptococcus pneumoniae to human epithelial cells infected with respiratory syncytial virus. Pediatr Res 55(6):972–978

    Article  PubMed  Google Scholar 

  16. Wang WY, Lim JH, Li JD (2012) Synergistic and feedback signaling mechanisms in the regulation of inflammation in respiratory infections. Cell Mol Immunol 9(2):131–135

    Article  PubMed  Google Scholar 

  17. Liu K, Gualano RC, Hibbs ML, Anderson GP, Bozinovski S (2008) Epidermal growth factor receptor signaling to Erk1/2 and STATs control the intensity of the epithelial inflammatory responses to rhinovirus infection. J Biol Chem 283(15):9977–9985

    Article  PubMed  CAS  Google Scholar 

  18. Xu X, Steere RR, Fedorchuk CA, Pang J, Lee JY, Lim JH, Xu H, Pan ZK, Maggirwar SB, Li JD (2011) Activation of epidermal growth factor receptor is required for NTHi-induced NF-kappaB-dependent inflammation. PLoS ONE 6(11):e28216

    Article  PubMed  CAS  Google Scholar 

  19. Zahm JM, Pierrot D, Puchelle E (1993) Epidermal growth factor promotes wound repair of human respiratory epithelium. Wound Repair Regen 1(3):175–180

    Article  PubMed  CAS  Google Scholar 

  20. Pichichero ME, Casey JR (2002) Otitis media. Expert Opin Pharmacother 3(8):1073–1090

    Article  PubMed  CAS  Google Scholar 

  21. Pichichero ME, Casey JR (2008) Diagnostic inaccuracy and subject exclusions render placebo and observational studies of acute otitis media inconclusive. Pediatr Infect Dis J 27(11):958–962

    Article  PubMed  Google Scholar 

  22. Pichichero ME, Wright T (2006) The use of tympanocentesis in the diagnosis and management of acute otitis media. Curr Infect Dis Rep 8(3):189–195

    Article  PubMed  Google Scholar 

  23. Tan TQ (2012) Pediatric invasive pneumococcal disease in the United States in the era of pneumococcal conjugate vaccines. Clin Microbiol Rev 25(3):409–419

    Article  PubMed  Google Scholar 

  24. Heikkinen T (2000) The role of respiratory viruses in otitis media. Vaccine 19(Suppl 1):S51–S55

    Article  PubMed  CAS  Google Scholar 

  25. Peltola VT, McCullers JA (2004) Respiratory viruses predisposing to bacterial infections: role of neuraminidase. Pediatr Infect Dis J 23(1 Suppl):S87–S97

    PubMed  Google Scholar 

  26. Li W, Moltedo B, Moran TM (2012) Type I interferon induction during influenza virus infection increases susceptibility to secondary Streptococcus pneumoniae infection by negative regulation of gammadelta T cells. J Virol 86(22):12304–12312

    Article  PubMed  CAS  Google Scholar 

  27. Diavatopoulos DA, Short KR, Price JT, Wilksch JJ, Brown LE, Briles DE, Strugnell RA, Wijburg OL (2010) Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. Faseb J 24(6):1789–1798

    Article  PubMed  CAS  Google Scholar 

  28. Pittet LA, Hall-Stoodley L, Rutkowski MR, Harmsen AG (2010) Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 42(4):450–460

    Article  PubMed  CAS  Google Scholar 

  29. Conway B, Ronald A (1988) An overview of some mechanisms of bacterial pathogenesis. Can J Microbiol 34(3):281–286

    Article  PubMed  CAS  Google Scholar 

  30. Beachey EH, Courtney HS (1987) Bacterial adherence: the attachment of group A streptococci to mucosal surfaces. Rev Infect Dis 9(Suppl 5):S475–S481

    Article  PubMed  CAS  Google Scholar 

  31. Bakaletz LO (1995) Viral potentiation of bacterial superinfection of the respiratory tract. Trends Microbiol 3(3):110–114

    Article  PubMed  CAS  Google Scholar 

  32. Hernandez M, Leichtle A, Pak K, Ebmeyer J, Euteneuer S, Obonyo M, Guiney DG, Webster NJ, Broide DH, Ryan AF, Wasserman SI (2008) Myeloid differentiation primary response gene 88 is required for the resolution of otitis media. J Infect Dis 198(12):1862–1869

    Article  PubMed  Google Scholar 

  33. Leichtle A, Hernandez M, Pak K, Yamasaki K, Cheng CF, Webster NJ, Ryan AF, Wasserman SI (2009) TLR4-mediated induction of TLR2 signaling is critical in the pathogenesis and resolution of otitis media. Innate immun 15(4):205–215

    Article  PubMed  CAS  Google Scholar 

  34. Liu K, Anderson GP, Bozinovski S (2008) DNA vector augments inflammation in epithelial cells via EGFR-dependent regulation of TLR4 and TLR2. Am J Respir Cell Mol Biol 39(3):305–311

    Article  PubMed  CAS  Google Scholar 

  35. Koff JL, Shao MX, Ueki IF, Nadel JA (2008) Multiple TLRs activate EGFR via a signaling cascade to produce innate immune responses in airway epithelium. Am J Physiol 294(6):L1068–L1075

    CAS  Google Scholar 

  36. Mikami F, Gu H, Jono H, Andalibi A, Kai H, Li JD (2005) Epidermal growth factor receptor acts as a negative regulator for bacterium nontypeable Haemophilus influenzae—induced Toll-like receptor 2 expression via an Src-dependent p38 mitogen-activated protein kinase signaling pathway. J Biol Chem 280(43):36185–36194

    Article  PubMed  CAS  Google Scholar 

  37. Lugade AA, Bogner PN, Murphy TF, Thanavala Y (2011) The role of TLR2 and bacterial lipoprotein in enhancing airway inflammation and immunity. Front Immunol 2:10

    Article  PubMed  Google Scholar 

  38. Dessing MC, Florquin S, Paton JC, van der Poll T (2008) Toll-like receptor 2 contributes to antibacterial defence against pneumolysin-deficient pneumococci. Cell Microbiol 10(1):237–246

    PubMed  CAS  Google Scholar 

  39. Shaykhiev R, Behr J, Bals R (2008) Microbial patterns signaling via Toll-like receptors 2 and 5 contribute to epithelial repair, growth and survival. PLoS ONE 3(1):e1393

    Article  PubMed  Google Scholar 

  40. Olliver M, Hiew J, Mellroth P, Henriques-Normark B, Bergman P (2011) Human monocytes promote Th1 and Th17 responses to Streptococcus pneumoniae. Infect Immun 79(10):4210–4217

    Article  PubMed  Google Scholar 

  41. Moffitt KL, Gierahn TM, Lu YJ, Gouveia P, Alderson M, Flechtner JB, Higgins DE, Malley R (2011) T(H)17-based vaccine design for prevention of Streptococcus pneumoniae colonization. Cell Host Microbe 9(2):158–165

    Article  PubMed  CAS  Google Scholar 

  42. Liu K, Chen L, Kaur R, Pichichero M (2013) Transcriptome signature in young children with acute otitis media due to Streptococcus pneumoniae. Microbes Infect 14(7–8):600–609

    Google Scholar 

  43. Nassif PS, Simpson SQ, Izzo AA, Nicklaus PJ (1997) Interleukin-8 concentration predicts the neutrophil count in middle ear effusion. Laryngoscope 107(9):1223–1227

    Article  PubMed  CAS  Google Scholar 

  44. Storgaard M, Larsen K, Blegvad S, Nodgaard H, Ovesen T, Andersen PL, Obel N (1997) Interleukin-8 and chemotactic activity of middle ear effusions. J Infect Dis 175(2):474–477

    Article  PubMed  CAS  Google Scholar 

  45. Ichimura K (1982) Neutrophil chemotaxis in children with recurrent otitis media. Int J Pediatr Otorhinolaryngol 4(1):47–55

    Article  PubMed  CAS  Google Scholar 

  46. Zhang Z, Clarke TB, Weiser JN (2009) Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Investig 119(7):1899–1909

    PubMed  CAS  Google Scholar 

  47. Levy O, Zarember KA, Roy RM, Cywes C, Godowski PJ, Wessels MR (2004) Selective impairment of TLR-mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-alpha induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to R-848. J Immunol 173(7):4627–4734

    PubMed  CAS  Google Scholar 

  48. Uno K, Kato K, Atsumi T, Suzuki T, Yoshitake J, Morita H, Ohara S, Kotake Y, Shimosegawa T, Yoshimura T (2007) Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells. Gastrointest Liver Physiol 293(5):61004–61012

    Google Scholar 

  49. Williams DL, Ha T, Li C, Kalbfleisch JH, Schweitzer J, Vogt W, Browder IW (2003) Modulation of tissue Toll-like receptor 2 and 4 during the early phases of polymicrobial sepsis correlates with mortality. Crit Care Med 31(6):1808–1818

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by R01DC008671 awarded to Michael Pichichero. DV had support from K22AI089975. We thank Karin Pryharski for her technical help and Qingfu Xu for viral detection of patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Pichichero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhoeven, D., Nesselbush, M. & Pichichero, M.E. Lower nasopharyngeal epithelial cell repair and diminished innate inflammation responses contribute to the onset of acute otitis media in otitis-prone children. Med Microbiol Immunol 202, 295–302 (2013). https://doi.org/10.1007/s00430-013-0293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-013-0293-2

Keywords

Navigation