Skip to main content

Advertisement

Log in

Reference ranges and cutoff levels of pneumococcal antibody global serum assays (IgG and IgG2) and specific antibodies in healthy children and adults

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Pneumococcal antibodies represent the acquisition of natural immunity. Determination of pneumococcal antibodies is an important screening tool for immunodeficiencies. Our study generated reference ranges and cutoff levels for pneumococcal antibody global serum assays correlated to a specific pneumococcal antibody ELISA. Specific pneumococcal antibody levels were measured from 457 children undergoing elective surgery and 46 healthy adult volunteers (88 with previous pneumococcal immunization from both groups), 22 severe immunodeficient subjects with ataxia telangiectasia (A-T, negative controls), and age-matched 36 healthy allergic asthmatics. We determined a representative panel of serotype-specific pneumococcal antibodies (serotype 4, 5, 6B, 7F, 14, 18C, 19F, 23F) by ELISA and global pneumococcal IgG and IgG2 antibodies by EIA. In vaccine-naïve healthy subjects, initial pneumococcal IgG geometric mean concentrations of 13.1 μg/ml were low in the first year of life and increased over the time, reaching adult levels (70.5 μg/ml) at age 8–12 years. In parallel, IgG2 antibodies increased from 20.7 % (0.5–1 year old) to adult proportions (>30 %) in preschoolers. Correlation between the pneumococcal IgG screening assay and specific pneumococcal antibody levels was acceptable (Pearson’s coefficient r = 0.4455; p = 0.001). Cutoff levels showed high sensitivity, whereas specificity was high to moderate calculated from correlations with the specific ELISA. We provide reference ranges and cutoff levels for the interpretation of specific antibody determinations in the clinical setting. The global pneumococcal IgG/IgG2 assay is a suitable screening tool and correlates with the ELISA serotype-specific pneumococcal antibodies. However, results below our cutoff values should be re-evaluated by serotype-specific ELISA testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. de Vries E (2005) Patient-centred screening for primary immunodeficiency: a multi-stage diagnostic protocol designed for non-immunologists. Clin Exp Immunol 145:204–214

    Article  Google Scholar 

  2. Schauer U, Stemberg F, Rieger CHL, Büttner W, Borte M, Schubert S et al (2003) Levels of antibodies specific to tetanus toxoid, Haemophilus influenzae type B, and pneumococcal capsular polysaccharide in healthy children and adults. Clin Diagn Lab Immunol 10(2):202–207

    PubMed  CAS  Google Scholar 

  3. Zielen S, Bröker M, Strnad N, Schwenen L, Schön P, Gottwald G, Hofmann D (1996) Simple determination of polysaccharide specific antibodies by means of chemically modified ELISA-Plates. J Immunol Methods 193(1):1–7

    Article  PubMed  CAS  Google Scholar 

  4. Concepcion NF, Frasch CE (2001) Pneumococcal type 22F polysaccharide absorption improves the specificity of a pneumococcal-polysaccharide enzyme-linked immunosorbent assay. Clin Diagn Lab Immunol 8:266–272

    PubMed  CAS  Google Scholar 

  5. The Binding Site. Human IgG subclass liquid reagent kits, U.K., insert code SIN 027; 2004: 17

  6. Madore DV, Quataert SA, Mariani M, Berbers GAM (1999) Interlaboratory reproducibility of an enzyme-linked immunosorbent assay for quantitation of antibodies for Haemophilus influenzae type b polysaccharide. Clin Diagn Lab Immunol 6:446

    PubMed  CAS  Google Scholar 

  7. Siber GR, Chang I, Baker S, Fernsten P, O’Brien KL, Santosham M, Klugman KP et al (2007) Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine 25(19):3816–3826

    Article  PubMed  CAS  Google Scholar 

  8. Sanders EAM, Rijkers GT, Kuis W et al (1993) Defective anti-pneumococcal polysaccharide antibody response in children with recurrent respiratory tract infections. J Allergy Clin Immunol 91:110–119

    Article  PubMed  CAS  Google Scholar 

  9. Schubert R, Reichenbach J, Rose MA, Zielen S (2004) Immunogenicity of the 7-valent pneumococcal conjugate vaccine in patients with ataxia telangiectasia. Pediatr Infect Dis J 23(3):269–270

    Article  PubMed  Google Scholar 

  10. Akikusa JD, Kemp AS (2001) Clinical correlates of response to pneumococcal immunization. J Paediatr Child Health 37:382–387

    Article  PubMed  CAS  Google Scholar 

  11. Ochsenbein AF, Pinschewer DD, Sierro S, Horvath E, Hengartner H, Zinkernagel RM (2000) Protective long-term antibody memory by antigen-driven and T help-dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs. Proc Natl Acad Sci USA 97:13263–13268

    Article  PubMed  CAS  Google Scholar 

  12. Peset Llopis MJ, Harms G, Hardonk MJ, Timens W (1996) Human immune response to pneumococcal polysaccharides: complement-mediated localization preferentially on CD21-positive splenic marginal zone B cells and follicular dendritic cells. J Allergy Clin Immunol 97:1015–1024

    Article  PubMed  CAS  Google Scholar 

  13. Sorensen RU, Leiva LE, Javier FC, Sacerdote DM, Bradford N, Butler B, Giangrosso PA, Moore C (1998) Influence of age on the response to Streptococcus pneumoniae vaccine in patients with recurrent infections and normal immunoglobulin concentrations. J Allergy Clin Immunol 102:215–221

    Article  PubMed  CAS  Google Scholar 

  14. Soininen A, Karpala M, Wahlman SL, Lehtonen H, Kayhty H (2002) Specificities and opsonophagocytic activities of antibodies to pneumococcal capsular polysaccharides in sera of unimmunized young children. Clin Diagn Lab Immunol 9:1032–1038

    PubMed  CAS  Google Scholar 

  15. Lau RC, Bettelheim KA, Patel AC (1988) The 1985 national immunization survey: diphtheria, tetanus, and pertussis. NZ Med J 101:797–800

    CAS  Google Scholar 

  16. Hey C, Rose MA, Kujumdshiev S, Gstoettner W, Schubert R, Zielen S (2005) Does the 23-valent pneumococcal vaccine protect cochlear implant recipients? Laryngoscope 115(9):1586–1590

    Article  PubMed  Google Scholar 

  17. Rose MA, Hey C, Kujumdshiew S, Gall V, Schubert R, Zielen S (2004) Immunogenicity of pneumococcal vaccination in patients with cochlear implants. J Infect Dis 190:551–557

    Article  PubMed  CAS  Google Scholar 

  18. Balmer P, North J, Baxter D, Stanford E, Melegaro A, Kaczmarski EB, Miller E, Borrow R (2003) Measurement and interpretation of pneumococcal IgG levels for clinical management. Clin Exp Immunol 133(3):364–369

    Article  PubMed  CAS  Google Scholar 

  19. Jokinen JT, Ahman H, Kilpi TM, Makela PH, Kayhty MH (2004) Concentration of antipneumococcal antibodies as a serological correlate of protection: an application to acute otitis media. J Infect Dis 190:545–550

    Article  PubMed  CAS  Google Scholar 

  20. Dagan R, Givon-Lavi N, Fraser D, Lipsitch M, Siber GR, Kohberger R (2005) Serum serotype-specific pneumococcal anticapsular immunoglobulin G concentrations after immunization with a 9-valent conjugate pneumococcal vaccine correlate with nasopharyngeal acquisition of pneumococcus. J Infect Dis 192(3):367–376

    Article  PubMed  CAS  Google Scholar 

  21. Millar EV, O’Brien KL, Bronsdon MA, Madore D, Hackell JG, Reid R, Santosham M (2007) Anticapsular serum antibody concentration and protection against pneumococcal colonization among children vaccinated with 7-valent pneumococcal conjugate vaccine. Clin Infect Dis 44(9):1173–1179

    Article  PubMed  CAS  Google Scholar 

  22. Parkkali T, Kayhty H, Anttila M, Ruutu T, Wuorimaa T, Soininen A et al (1999) IgG subclasses and avidity of antibodies to polysaccharide antigens in allogeneic BMT recipients after vaccination with pneumococcal polysaccharide and Haemophilus influenzae type b conjugate vaccines. Bone Marrow Transplant 24:671–678

    Article  PubMed  CAS  Google Scholar 

  23. Soininen A, Seppala I, Nieminen T, Eskola J, Kayhty H (1999) IgG subclass distribution of antibodies after vaccination of adults with pneumococcal conjugate vaccines. Vaccine 17:1889–1897

    Article  PubMed  CAS  Google Scholar 

  24. Boyle RJ, Le C, Balloch A, Tang MLK (2006) The clinical syndrome of specific antibody deficiency in children. Clin Exp Immunol 146:486–492

    Article  PubMed  CAS  Google Scholar 

  25. Rose MA, Schubert R, Strnad N, Zielen S (2005) Priming of immunological memory by pneumococcal conjugate vaccine in children unresponsive to 23-valent polysaccharide pneumococcal vaccine. Clin Diagn Lab Immunol 12(10):1216–1222

    PubMed  CAS  Google Scholar 

  26. Lehrnbecher T, Schubert R, Behl M, Koenig M, Rose MA, Koehl U et al (2009) Impaired pneumococcal immunity in children after treatment for acute lymphoblastic leukaemia. Br J Haematol 147(5):700–705

    Article  PubMed  CAS  Google Scholar 

  27. Rose MA, Gruendler M, Schubert R, Kitz R, Schulze J, Rosewich M, Zielen S (2009) Safety and immunogenicity of sequential pneumococcal immunization in preschool asthmatics. Vaccine 27(38):5259–5264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a research grant of The Binding Site GmbH.

Conflict of interest

M.A.R and S.Z. have received support to attend scientific meetings and honoraria for lecturing from Pfizer Vaccines, The Binding Site, and Sanofi Pasteur MSD. Y.V. was affiliated to The Binding Site GmbH., R.S., J.B., J.S., and E.H. declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, M.A., Buess, J., Ventur, Y. et al. Reference ranges and cutoff levels of pneumococcal antibody global serum assays (IgG and IgG2) and specific antibodies in healthy children and adults. Med Microbiol Immunol 202, 285–294 (2013). https://doi.org/10.1007/s00430-013-0292-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-013-0292-3

Keywords

Navigation