Skip to main content

Advertisement

Log in

Pore-forming bacterial toxins and antimicrobial peptides as modulators of ADAM function

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Membrane-perturbating proteins and peptides are widespread agents in biology. Pore-forming bacterial toxins represent major virulence factors of pathogenic microorganisms. Membrane-damaging peptides constitute important antimicrobial effectors of innate immunity. Membrane perturbation can incur multiple responses in mammalian cells. The present discussion will focus on the interplay between membrane-damaging agents and the function of cell-bound metalloproteinases of the ADAM family. These transmembrane enzymes have emerged as the major proteinase family that mediate the proteolytic release of membrane-associated proteins, a process designated as “shedding”. They liberate a large spectrum of functionally active molecules including inflammatory cytokines, growth factor receptors and cell adhesion molecules, thereby regulating such vital cellular functions as cell–cell adhesion, cell proliferation and cell migration. ADAM activation may constitute part of the cellular recovery machinery on the one hand, but likely also promotes inflammatory processes on the other. The mechanisms underlying ADAM activation and the functional consequences thereof are currently the subject of intensive research. Attention here is drawn to the possible involvement of purinergic receptors and ceramide generation in the context of ADAM activation following membrane perturbation by membrane-active agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

The references marked with an asterisk result from the work within projects of the collaborative research centre (SFB) 490

  1. Pan D, Rubin GM (1997) Kuzbanian controls proteolytic processing of notch and mediates lateral inhibition during drosophila and vertebrate neurogenesis. Cell 90:271–280

    Article  PubMed  CAS  Google Scholar 

  2. Huang X, Huang P, Robinson MK, Stern MJ, Jin Y (2003) UNC-71, a disintegrin and metalloprotease (ADAM) protein, regulates motor axon guidance and sex myoblast migration in C. elegans. Development 130:3147–3161

    Article  PubMed  CAS  Google Scholar 

  3. Nakamura T, Abe H, Hirata A, Shimoda C (2004) ADAM family protein Mde10 is essential for development of spore envelopes in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 3:27–39

    Article  PubMed  CAS  Google Scholar 

  4. Rose-John S, Heinrich PC (1994) Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J 300(Pt 2):281–290

    PubMed  CAS  Google Scholar 

  5. Reiss K, Saftig P (2009) The “a disintegrin and metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20:126–137

    Article  PubMed  CAS  Google Scholar 

  6. Pruessmeyer J, Ludwig A (2009) The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin Cell Dev Biol 20:164–174

    Article  PubMed  CAS  Google Scholar 

  7. Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289

    Article  PubMed  CAS  Google Scholar 

  8. Saftig P, Reiss K (2011) The “a disintegrin and metalloproteases” ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol 90:527–535

    Article  PubMed  CAS  Google Scholar 

  9. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena IA, von Figura K et al (2002) The disintegrin/metalloprotease ADAM 10 is essential for notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11:2615–2624

    Article  PubMed  CAS  Google Scholar 

  10. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Castner BJ, Johnson RS, Fitzner JN et al (1998) An essential role for ectodomain shedding in mammalian development. Science 282:1281–1284

    Article  PubMed  CAS  Google Scholar 

  11. Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E, de Strooper B, Hartmann D, Saftig P (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell–cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci U.S.A 102:9182–9187

    Article  PubMed  CAS  Google Scholar 

  12. Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P (2005) ADAM10 cleavage of N-cadherin and regulation of cell–cell adhesion and beta-catenin nuclear signalling. EMBO J 24:742–752

    Article  PubMed  CAS  Google Scholar 

  13. Nagano O, Murakami D, Hartmann D, de Strooper B, Saftig P, Iwatsubo T, Nakajima M, Shinohara M, Saya H (2004) Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2 +) influx and PKC activation. J Cell Biol 165:893–902

    Article  PubMed  CAS  Google Scholar 

  14. Schulz B, Pruessmeyer J, Maretzky T, Ludwig A, Blobel CP, Saftig P, Reiss K (2008) ADAM10 regulates endothelial permeability and T-Cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res 102:1192–1201

    Article  PubMed  CAS  Google Scholar 

  15. Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, Hartmann D, Fahrenholz F, Postina R, Matthews V et al (2003) The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell–cell adhesion. Blood 102:1186–1195

    Article  PubMed  CAS  Google Scholar 

  16. Abel S, Hundhausen C, Mentlein R, Schulte A, Berkhout TA, Broadway N, Hartmann D, Sedlacek R, Dietrich S, Muetze B et al (2004) The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J Immunol 172:6362–6372

    PubMed  CAS  Google Scholar 

  17. Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, Hartmann D, Saftig P, Blobel CP (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164:769–779

    Article  PubMed  CAS  Google Scholar 

  18. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888

    PubMed  CAS  Google Scholar 

  19. Yan Y, Shirakabe K, Werb Z (2002) The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J Cell Biol 158:221–226

    Article  PubMed  CAS  Google Scholar 

  20. Blobel CP, Carpenter G, Freeman M (2009) The role of protease activity in ErbB biology. Exp Cell Res 315:671–682

    Article  PubMed  CAS  Google Scholar 

  21. Swendeman S, Mendelson K, Weskamp G, Horiuchi K, Deutsch U, Scherle P, Hooper A, Rafii S, Blobel CP (2008) VEGF-A stimulates ADAM17-dependent shedding of VEGFR2 and crosstalk between VEGFR2 and ERK signaling. Circ Res 103:916–918

    Article  PubMed  CAS  Google Scholar 

  22. Maretzky T, Evers A, Zhou W, Swendeman SL, Wong PM, Rafii S, Reiss K, Blobel CP (2011) Migration of growth factor-stimulated epithelial and endothelial cells depends on EGFR transactivation by ADAM17. Nat Commun 2:229

    Article  PubMed  Google Scholar 

  23. Killock DJ, Ivetic A (2010) The cytoplasmic domains of TNFalpha-converting enzyme (TACE/ADAM17) and L-selectin are regulated differently by p38 MAPK and PKC to promote ectodomain shedding. Biochem J 428:293–304

    Article  PubMed  CAS  Google Scholar 

  24. Soond SM, Everson B, Riches DW, Murphy G (2005) ERK-mediated phosphorylation of Thr735 in TNFalpha-converting enzyme and its potential role in TACE protein trafficking. J Cell Sci 118:2371–2380

    Article  PubMed  CAS  Google Scholar 

  25. Horiuchi K, Le Gall S, Schulte M, Yamaguchi T, Reiss K, Murphy G, Toyama Y, Hartmann D, Saftig P, Blobel CP (2007) Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell 18:176–188

    Article  PubMed  CAS  Google Scholar 

  26. Diaz-Rodriguez E, Montero JC, Esparis-Ogando A, Yuste L, Pandiella A (2002) Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding. Mol Biol Cell 13:2031–2044

    Article  PubMed  CAS  Google Scholar 

  27. Fan H, Turck CW, Derynck R (2003) Characterization of growth factor-induced serine phosphorylation of tumor necrosis factor-alpha converting enzyme and of an alternatively translated polypeptide. J Biol Chem 278:18617–18627

    Article  PubMed  CAS  Google Scholar 

  28. Xu P, Derynck R (2010) Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol Cell 37:551–566

    Article  PubMed  CAS  Google Scholar 

  29. Reddy P, Slack JL, Davis R, Cerretti DP, Kozlosky CJ, Blanton RA, Shows D, Peschon JJ, Black RA (2000) Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme. J Biol Chem 275:14608–14614

    Article  PubMed  CAS  Google Scholar 

  30. Doedens JR, Mahimkar RM, Black RA (2003) TACE/ADAM-17 enzymatic activity is increased in response to cellular stimulation. Biochem Biophys Res Commun 308:331–338

    Article  PubMed  CAS  Google Scholar 

  31. Lorenzen I, Trad A, Grotzinger J (2011) Multimerisation of A disintegrin and metalloprotease protein-17 (ADAM17) is mediated by its EGF-like domain. Biochem Biophys Res Commun 415:330–336

    Article  PubMed  CAS  Google Scholar 

  32. Xu P, Liu J, Sakaki-Yumoto M, Derynck R (2012) TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci Signal 5:ra34

    Google Scholar 

  33. Le Gall SM, Maretzky T, Issuree PD, Niu XD, Reiss K, Saftig P, Khokha R, Lundell D, Blobel CP (2010) ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J Cell Sci 123:3913–3922

    Article  PubMed  Google Scholar 

  34. *Reiss K, Cornelsen I, Husmann M, Gimpl G, Bhakdi S (2011) Unsaturated fatty acids drive disintegrin and metalloproteinase (ADAM)-dependent cell adhesion, proliferation, and migration by modulating membrane fluidity. J Biol Chem 286:26931–26942

    Article  PubMed  CAS  Google Scholar 

  35. Bhakdi S, Tranum-Jensen J (1987) Damage to mammalian cells by proteins that form transmembrane pores. Rev Physiol Biochem Pharmacol 107:147–223

    Article  PubMed  CAS  Google Scholar 

  36. Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Freche B (2008) Bacterial pore-forming toxins: the (w)hole story? Cell Mol Life Sci 65:493–507

    Article  PubMed  CAS  Google Scholar 

  37. Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, Kehoe M, Palmer M (1996) Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol 165:73–79

    Article  PubMed  CAS  Google Scholar 

  38. Bhakdi S, Tranum-Jensen J (1991) Alpha-toxin of staphylococcus aureus. Microbiol Rev 55:733–751

    PubMed  CAS  Google Scholar 

  39. Hildebrand A, Pohl M, Bhakdi S (1991) Staphylococcus aureus alpha-toxin. Dual mechanism of binding to target cells. J Biol Chem 266:17195–17200

    PubMed  CAS  Google Scholar 

  40. Valeva A, Walev I, Pinkernell M, Walker B, Bayley H, Palmer M, Bhakdi S (1997) Transmembrane beta-barrel of staphylococcal alpha-toxin forms in sensitive but not in resistant cells. Proc Natl Acad Sci U.S.A 94:11607–11611

    Article  PubMed  CAS  Google Scholar 

  41. *Husmann M, Beckmann E, Boller K, Kloft N, Tenzer S, Bobkiewicz W, Neukirch C, Bayley H, Bhakdi S (2009) Elimination of a bacterial pore-forming toxin by sequential endocytosis and exocytosis. FEBS Lett 583:337–344

    Article  PubMed  CAS  Google Scholar 

  42. Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW (2008) Repair of injured plasma membrane by rapid Ca2 + -dependent endocytosis. J Cell Biol 180:905–914

    Article  PubMed  CAS  Google Scholar 

  43. Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH, Ung K, Browne KA, Baran K, Bashtannyk-Puhalovich TA et al (2007) A common fold mediates vertebrate defense and bacterial attack. Science 317:1548–1551

    Article  PubMed  CAS  Google Scholar 

  44. Hadders MA, Beringer DX, Gros P (2007) Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317:1552–1554

    Article  PubMed  CAS  Google Scholar 

  45. Gilbert RJ (2010) Cholesterol-dependent cytolysins. Adv Exp Med Biol 677:56–66

    Article  PubMed  CAS  Google Scholar 

  46. *Valeva A, Walev I, Kemmer H, Weis S, Siegel I, Boukhallouk F, Wassenaar TM, Chavakis T, Bhakdi S (2005) Binding of Escherichia coli hemolysin and activation of the target cells is not receptor-dependent. J Biol Chem 280:36657–36663

    Article  PubMed  CAS  Google Scholar 

  47. Uhlen P, Laestadius A, Jahnukainen T, Soderblom T, Backhed F, Celsi G, Brismar H, Normark S, Aperia A, Richter-Dahlfors A (2000) Alpha-haemolysin of uropathogenic E. coli induces Ca2 + oscillations in renal epithelial cells. Nature 405:694–697

    Article  PubMed  CAS  Google Scholar 

  48. *Koschinski A, Repp H, Unver B, Dreyer F, Brockmeier D, Valeva A, Bhakdi S, Walev I (2006) Why Escherichia coli alpha-hemolysin induces calcium oscillations in mammalian cells–the pore is on its own. FASEB J 20:973–975

    Article  PubMed  CAS  Google Scholar 

  49. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  PubMed  CAS  Google Scholar 

  50. Duclohier H (2010) Antimicrobial peptides and peptaibols, substitutes for conventional antibiotics. Curr Pharm Des 16:3212–3223

    Article  PubMed  CAS  Google Scholar 

  51. Park Y, Hahm KS (2005) Antimicrobial peptides (AMPs): peptide structure and mode of action. J Biochem Mol Biol 38:507–516

    Article  PubMed  CAS  Google Scholar 

  52. Lohner K, Blondelle SE (2005) Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. Comb Chem High Throughput Screen 8:241–256

    Article  PubMed  CAS  Google Scholar 

  53. Wilke GA, Bubeck WJ (2010) Role of a disintegrin and metalloprotease 10 in staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci U.S.A 107:13473–13478

    Article  PubMed  CAS  Google Scholar 

  54. Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y, Bubeck WJ (2011) A staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17:1310–1314

    Article  PubMed  CAS  Google Scholar 

  55. Inoshima N, Wang Y, Wardenburg JB (2012) Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. J Invest Dermatol 132:1513–1516

    Article  PubMed  CAS  Google Scholar 

  56. Walev I, Vollmer P, Palmer M, Bhakdi S, Rose-John S (1996) Pore-forming toxins trigger shedding of receptors for interleukin 6 and lipopolysaccharide. Proc Natl Acad Sci U.S.A 93:7882–7887

    Article  PubMed  CAS  Google Scholar 

  57. *Haugwitz U, Bobkiewicz W, Han SR, Beckmann E, Veerachato G, Shaid S, Biehl S, Dersch K, Bhakdi S, Husmann M (2006) Pore-forming staphylococcus aureus alpha-toxin triggers epidermal growth factor receptor-dependent proliferation. Cell Microbiol 8:1591–1600

    Article  PubMed  CAS  Google Scholar 

  58. Huffman DL, Abrami L, Sasik R, Corbeil J, van der Goot FG, Aroian RV (2004) Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci U.S.A 101:10995–11000

    Article  PubMed  CAS  Google Scholar 

  59. *Husmann M, Dersch K, Bobkiewicz W, Beckmann E, Veerachato G, Bhakdi S (2006) Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore-forming S. aureus alpha-toxin or streptolysin O. Biochem Biophys Res Commun 344:1128–1134

    Article  PubMed  CAS  Google Scholar 

  60. Skals M, Jorgensen NR, Leipziger J, Praetorius HA (2009) Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc Natl Acad Sci U.S.A 106:4030–4035

    Article  PubMed  CAS  Google Scholar 

  61. Skals M, Leipziger J, Praetorius HA (2011) Haemolysis induced by alpha-toxin from Staphylococcus aureus requires P2X receptor activation. Pflugers Arch 462:669–679

    Article  PubMed  CAS  Google Scholar 

  62. Garcia-Marcos M, Pochet S, Marino A, Dehaye JP (2006) P2X7 and phospholipid signalling: the search of the “missing link” in epithelial cells. Cell Signal 18:2098–2104

    Article  PubMed  CAS  Google Scholar 

  63. Garcia-Marcos M, Perez-Andres E, Tandel S, Fontanils U, Kumps A, Kabre E, Gomez-Munoz A, Marino A, Dehaye JP, Pochet S (2006) Coupling of two pools of P2X7 receptors to distinct intracellular signaling pathways in rat submandibular gland. J Lipid Res 47:705–714

    Article  PubMed  CAS  Google Scholar 

  64. Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E et al (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28:1043–1054

    Article  PubMed  CAS  Google Scholar 

  65. *Walev I, Tappe D, Gulbins E, Bhakdi S (2000) Streptolysin O-permeabilised granulocytes shed L-selectin concomitantly with ceramide generation via neutral sphingomyelinase. J Leukoc Biol 68:865–872

    PubMed  CAS  Google Scholar 

  66. Jamieson GP, Snook MB, Thurlow PJ, Wiley JS (1996) Extracellular ATP causes of loss of L-selectin from human lymphocytes via occupancy of P2Z purinocepters. J Cell Physiol 166:637–642

    Article  PubMed  CAS  Google Scholar 

  67. Gu B, Bendall LJ, Wiley JS (1998) Adenosine triphosphate-induced shedding of CD23 and L-selectin (CD62L) from lymphocytes is mediated by the same receptor but different metalloproteases. Blood 92:946–951

    PubMed  CAS  Google Scholar 

  68. Elliott JI, Surprenant A, Marelli-Berg FM, Cooper JC, Cassady-Cain RL, Wooding C, Linton K, Alexander DR, Higgins CF (2005) Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat Cell Biol 7:808–816

    Article  PubMed  CAS  Google Scholar 

  69. Sluyter R, Wiley JS (2002) Extracellular adenosine 5′-triphosphate induces a loss of CD23 from human dendritic cells via activation of P2X7 receptors. Int Immunol 14:1415–1421

    Article  PubMed  CAS  Google Scholar 

  70. Moon H, Na HY, Chong KH, Kim TJ (2006) P2X7 receptor-dependent ATP-induced shedding of CD27 in mouse lymphocytes. Immunol Lett 102:98–105

    Article  PubMed  CAS  Google Scholar 

  71. Orsolic N (2011) Bee venom in cancer therapy. Cancer Metastasis Rev 31:173–194

    Google Scholar 

  72. *Sommer A, Fries A, Cornelsen I, Speck N, Koch-Nolte F, Gimpl G, Andrae J, Bhakdi S, Reiss K (2012) Melittin modulates keratinocyte function through P2-receptor-dependent ADAM activation. J Biol Chem 287:23679–23689

    Google Scholar 

  73. Elssner A, Duncan M, Gavrilin M, Wewers MD (2004) A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol 172:4987–4994

    PubMed  CAS  Google Scholar 

  74. Wewers MD, Sarkar A (2009) P2X(7) receptor and macrophage function. Purinergic Signal 5:189–195

    Article  PubMed  CAS  Google Scholar 

  75. Lee CC, Sun Y, Qian S, Huang HW (2011) Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys J 100:1688–1696

    Article  PubMed  CAS  Google Scholar 

  76. Tomasinsig L, Pizzirani C, Skerlavaj B, Pellegatti P, Gulinelli S, Tossi A, Di Virgilio F, Zanetti M (2008) The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem 283:30471–30481

    Article  PubMed  CAS  Google Scholar 

  77. Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Nagai H et al (2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 175:4662–4668

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 490 (S.B.), CRC877 (K.R.) and the Cluster of Excellence “Inflammation at Interfaces” (K.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Reiss.

Additional information

This article is published as part of the Special Issue on Invasion and Persistence of Infectious Agents.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiss, K., Bhakdi, S. Pore-forming bacterial toxins and antimicrobial peptides as modulators of ADAM function. Med Microbiol Immunol 201, 419–426 (2012). https://doi.org/10.1007/s00430-012-0260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-012-0260-3

Keywords

Navigation