Medical Microbiology and Immunology

, Volume 200, Issue 3, pp 203–208 | Cite as

Screening and identification of host factors interacting with UL14 of herpes simplex virus 1

  • Fuqing Wu
  • Junji Xing
  • Shuai Wang
  • Meili Li
  • Chunfu ZhengEmail author
Rapid Communication


The UL14 protein of herpes simplex virus type 1 (HSV-1) is highly conserved in herpesvirus family. However, its exact function during the HSV-1 replication cycle is little known. In the present study, a high throughput yeast two-hybrid system was employed to screen the cellular factors interacting with UL14, and five target candidates were yielded: (1) TSC22 domain family protein 3 (TSC22D3); (2) Mediator of RNA polymerase II transcription subunit 8 isoform 1(MED8); (3) Runt-related transcription factor 3 (RUNX3); (4) Arrestin beta-2 (ARRB2); (5) Cereblon (CRBN). Indirect immunofluorescent assay showed that both TSC22D3 and MED8 co-localized with UL14. Co-immunoprecipitation assay demonstrated that UL14 could be immunoprecipitated by TSC22D3, suggesting that UL14 interacted with TSC22D3 under physiological condition. In summary, this study opened up new avenues toward delineating the function and physiological significance of UL14 during the HSV-1 replication cycle.


Herpes simplex virus 1 UL14 Yeast two-hybrid Co-localization Co-immunoprecipitation 



This work was supported by grants from the Start-up Fund of the Hundred Talents Program of the Chinese Academy of Sciences (20071010-141); the National Natural Science Foundation of China (30870120, 30900059 and 81000736); the Major State Basic Research Development Program of China (2010CB530105 and 2011CB504802). We thank Dr. Pallardy for the generous gift plasmid TSC22D3-Myc.


  1. 1.
    Cunningham C, Davison AJ, MacLean AR, Taus NS, Baines JD (2000) Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein. J Virol 74(1):33–41PubMedCrossRefGoogle Scholar
  2. 2.
    Wada K, Goshima F, Takakuwa H, Yamada H, Daikoku T, Nishiyama Y (1999) Identification and characterization of the UL14 gene product of herpes simplex virus type 2. J Gen Virol 80(Pt 9):2423–2431PubMedGoogle Scholar
  3. 3.
    Roizman B (1996) The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proc Natl Acad Sci USA 93(21):11307–11312PubMedCrossRefGoogle Scholar
  4. 4.
    Yamauchi Y, Kiriyama K, Kubota N, Kimura H, Usukura J, Nishiyama Y (2008) The UL14 tegument protein of herpes simplex virus type 1 is required for efficient nuclear transport of the alpha transinducing factor VP16 and viral capsids. J Virol 82(3):1094–1106PubMedCrossRefGoogle Scholar
  5. 5.
    Yamauchi Y, Wada K, Goshima F, Daikoku T, Ohtsuka K, Nishiyama Y (2002) Herpes simplex virus type 2 UL14 gene product has heat shock protein (HSP)-like functions. J Cell Sci 115(Pt 12):2517–2527PubMedGoogle Scholar
  6. 6.
    Tanaka M, Kagawa H, Yamanashi Y, Sata T, Kawaguchi Y (2003) Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol 77(2):1382–1391PubMedCrossRefGoogle Scholar
  7. 7.
    Asselin-Labat ML, David M, Biola-Vidamment A, Lecoeuche D, Zennaro MC, Bertoglio J, Pallardy M (2004) GILZ, a new target for the transcription factor FoxO3, protects T lymphocytes from interleukin-2 withdrawal-induced apoptosis. Blood 104(1):215–223PubMedCrossRefGoogle Scholar
  8. 8.
    Guo H, Ding Q, Lin F, Pan W, Lin J, Zheng AC (2009) Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res 145(2):312–320PubMedCrossRefGoogle Scholar
  9. 9.
    Xing J, Wang S, Lin F, Pan W, Hu CD, Zheng C (2011) Comprehensive characterization of interaction complexes of herpes simplex virus type 1 ICP22, UL3, UL4, and UL20.5. J Virol 85(4):1881–1886PubMedCrossRefGoogle Scholar
  10. 10.
    D’Adamio F, Zollo O, Moraca R, Ayroldi E, Bruscoli S, Bartoli A, Cannarile L, Migliorati G, Riccardi C (1997) A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death. Immunity 7(6):803–812PubMedCrossRefGoogle Scholar
  11. 11.
    Ayroldi E, Riccardi C (2009) Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB J 23(11):3649–3658PubMedCrossRefGoogle Scholar
  12. 12.
    Ayroldi E, Zollo O, Macchiarulo A, Di Marco B, Marchetti C, Riccardi C (2002) Glucocorticoid-induced leucine zipper inhibits the Raf-extracellular signal-regulated kinase pathway by binding to Raf-1. Mol Cell Biol 22(22):7929–7941PubMedCrossRefGoogle Scholar
  13. 13.
    Mittelstadt PR, Ashwell JD (2001) Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J Biol Chem 276(31):29603–29610PubMedCrossRefGoogle Scholar
  14. 14.
    Di Marco B, Massetti M, Bruscoli S, Macchiarulo A, Di Virgilio R, Velardi E, Donato V, Migliorati G, Riccardi C (2007) Glucocorticoid-induced leucine zipper (GILZ)/NF-kappaB interaction: role of GILZ homo-dimerization and C-terminal domain. Nucleic Acids Res 35(2):517–528PubMedCrossRefGoogle Scholar
  15. 15.
    Blazek E, Mittler G, Meisterernst M (2005) The mediator of RNA polymerase II. Chromosoma 113(8):399–408PubMedCrossRefGoogle Scholar
  16. 16.
    Conaway RC, Sato S, Tomomori-Sato C, Yao T, Conaway JW (2005) The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem Sci 30(5):250–255PubMedCrossRefGoogle Scholar
  17. 17.
    Brower CS, Sato S, Tomomori-Sato C, Kamura T, Pause A, Stearman R, Klausner RD, Malik S, Lane WS, Sorokina I, Roeder RG, Conaway JW, Conaway RC (2002) Mammalian mediator subunit mMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase. Proc Natl Acad Sci USA 99(16):10353–10358PubMedCrossRefGoogle Scholar
  18. 18.
    Leonard VH, Kohl A, Hart TJ, Elliott RM (2006) Interaction of Bunyamwera Orthobunyavirus NSs protein with mediator protein MED8: a mechanism for inhibiting the interferon response. J Virol 80(19):9667–9675PubMedCrossRefGoogle Scholar
  19. 19.
    van Wijnen AJ, Stein GS, Gergen JP, Groner Y, Hiebert SW, Ito Y, Liu P, Neil JC, Ohki M, Speck N (2004) Nomenclature for Runt-related (RUNX) proteins. Oncogene 23(24):4209–4210PubMedCrossRefGoogle Scholar
  20. 20.
    Yamamura Y, Lee WL, Inoue K, Ida H, Ito Y (2006) RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem 281(8):5267–5276PubMedCrossRefGoogle Scholar
  21. 21.
    Ito Y, Miyazono K (2003) RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr Opin Genet Dev 13(1):43–47PubMedCrossRefGoogle Scholar
  22. 22.
    McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290(5496):1574–1577PubMedCrossRefGoogle Scholar
  23. 23.
    Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 278(8):6258–6267PubMedCrossRefGoogle Scholar
  24. 24.
    Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, Lefkowitz RJ (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 100(19):10782–10787PubMedCrossRefGoogle Scholar
  25. 25.
    Xin W, Xiaohua N, Peilin C, Xin C, Yaqiong S, Qihan W (2008) Primary function analysis of human mental retardation related gene CRBN. Mol Biol Rep 35(2):251–256PubMedCrossRefGoogle Scholar
  26. 26.
    Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327(5971):1345–1350PubMedCrossRefGoogle Scholar
  27. 27.
    Yamauchi Y, Daikoku T, Goshima F, Nishiyama Y (2003) Herpes simplex virus UL14 protein blocks apoptosis. Microbiol Immunol 47(9):685–689PubMedGoogle Scholar
  28. 28.
    Marfe G, De Martino L, Filomeni G, Di Stefano C, Giganti MG, Pagnini U, Napolitano F, Iovane G, Ciriolo MR, Salimei PS (2006) Degenerate PCR method for identification of an antiapoptotic gene in BHV-1. J Cell Biochem 97(4):813–823PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fuqing Wu
    • 1
  • Junji Xing
    • 1
  • Shuai Wang
    • 1
  • Meili Li
    • 1
  • Chunfu Zheng
    • 1
    Email author
  1. 1.State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuchang, WuhanChina

Personalised recommendations