Medical Microbiology and Immunology

, Volume 200, Issue 3, pp 143–154 | Cite as

Analysis of Chlamydia pneumoniae infection in mononuclear cells by reverse transcription-PCR targeted to chlamydial gene transcripts

  • Laura MannonenEmail author
  • Eveliina Markkula
  • Mirja Puolakkainen
Original Investigation


Chlamydia pneumoniae (C. pneumoniae) is an important etiological agent of respiratory infections including pneumonia. C. pneumoniae DNA can be detected in peripheral blood mononuclear cells indicating that monocytes can assist the spread of infection to other anatomical sites. Persistent infection established at these sites could promote inflammation and enhance pathology. Thus, the mononuclear cells are in a strategic position in the development of persistent infection. To investigate the intracellular replication and fate of C. pneumoniae in mononuclear cells, we have established an in vitro model in the human Mono Mac 6 cell line. In the present study, we analyzed the transcription of 11 C. pneumoniae genes in Mono Mac 6 cells during infection by real-time RT-PCR. Our results suggest that the transcriptional profile of the studied genes in monocytes is different from that seen in epithelial cells. Furthermore, our study shows that genes related to secretion are transcribed, and secreted bacterial proteins are also translated during infection of monocytes, creating novel opportunities for the management of chlamydial infection of monocytes.


Chlamydia Persistent infection RT-PCR Transcription Mononuclear cells 



We thank Ali Mahar and Carola Andersson-Parkkonen for technical assistance with the plasmids and in vitro transcripts used in this work. We would like to thank Prof Guangming Zhong for supplying us with the monoclonal antibody against CPAF. This research was supported by the Academy of Finland (#110340) and in the framework of the ERA-NET PathoGenoMics, #217554/ECIBUG, and #130043/ChlamyTrans. The study was also supported by grants from the Jenny and Antti Wihuri Foundation (EM).


  1. 1.
    Haider S, Wagner M, Schmid MC, Sixt BS, Christian JG, Häcker G, Pichler P, Mechtler K, Müller A, Baranyi C, Toenshoff ER, Montanaro J, Horn M (2010) Raman microspectroscopy reveals long-term extracellular activity of chlamydiae. Mol Microbiol 77:687–700PubMedCrossRefGoogle Scholar
  2. 2.
    Saikku P (1992) The epidemiology and significance of Chlamydia pneumoniae. J Infect 25(Suppl 1):27–34PubMedCrossRefGoogle Scholar
  3. 3.
    Campbell LA, Kuo CC (2004) Chlamydia pneumoniae—an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2:23–32PubMedCrossRefGoogle Scholar
  4. 4.
    Hahn DL, Dodge RW, Golubjatnikov R (1991) Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA 266:225–230PubMedCrossRefGoogle Scholar
  5. 5.
    Saikku P, Leinonen M, Mattila K, Ekman MR, Nieminen MS, Mäkelä PH, Huttunen JK, Valtonen V (1988) Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2:983–986PubMedCrossRefGoogle Scholar
  6. 6.
    Beagley KW, Huston WM, Hansbro PM, Timms P (2009) Chlamydial infection of immune cells: altered function and implications for disease. Crit Rev Immunol 29:275–305PubMedGoogle Scholar
  7. 7.
    Boman J, Söderberg S, Forsberg J, Birgander LS, Allard A, Persson K, Jidell E, Kumlin U, Juto P, Waldenström A, Wadell G (1998) High prevalence of Chlamydia pneumoniae DNA in peripheral blood mononuclear cells in patients with cardiovascular disease and in middle-aged blood donors. J Infect Dis 178:274–277PubMedCrossRefGoogle Scholar
  8. 8.
    Maass M, Jahn J, Gieffers J, Dalhoff K, Katus HA, Solbach W (2000) Detection of Chlamydia pneumoniae within peripheral blood monocytes of patients with unstable angina or myocardial infarction. J Infect Dis 3(Suppl):S449–S451CrossRefGoogle Scholar
  9. 9.
    West SK, Kohlhepp SJ, Jin R, Gleaves CA, Stamm W, Gilbert DN (2009) Detection of circulating Chlamydophila pneumoniae in patients with coronary artery disease and healthy control subjects. Clin Infect Dis 48(5):560–567PubMedCrossRefGoogle Scholar
  10. 10.
    Epstein SE, Zhu J, Burnett MS, Zhou YF, Vercellotti G, Hajjar D (2000) Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. Arterioscler Thromb Vasc Biol 20:1417–1420PubMedCrossRefGoogle Scholar
  11. 11.
    Lehr HA, Sagban TA, Ihling C, Zähringer U, Hungerer KD, Blumrich M, Reifenberg K, Bhakdi S (2001) Immunopathogenesis of atherosclerosis: endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation 104:914–920PubMedCrossRefGoogle Scholar
  12. 12.
    Bhakdi S, Lackner KJ, Han SR, Torzewski M, Husmann M (2004) Beyond cholesterol: the enigma of atherosclerosis revisited. Thromb Haemost 91:639–645PubMedGoogle Scholar
  13. 13.
    Byrne GI, Ouellette SP, Wang Z, Rao JP, Lu L, Beatty WL, Hudson AP (2001) Chlamydia pneumoniae expresses genes required for DNA replication but not cytokinesis during persistent infection of HEp-2 cells. Infect Immun 69:5423–5429PubMedCrossRefGoogle Scholar
  14. 14.
    Mannonen L, Kamping E, Penttilä T, Puolakkainen M (2004) IFN-γ induced persistent Chlamydia pneumoniae infection in HL and Mono Mac 6 cells: characterization by real-time quantitative PCR and culture. Microb Pathog 36:41–50PubMedCrossRefGoogle Scholar
  15. 15.
    Bobryshev YV, Killingsworth MC, Tran D, Lord R (2008) Amalgamation of Chlamydia pneumoniae inclusions with lipid droplets in foam cells in human atherosclerotic plaque. Virchows Arch 453:69–77PubMedCrossRefGoogle Scholar
  16. 16.
    Al-Younes HM, Rudel T, Brinkmann V, Szczepek AJ, Meyer TF (2001) Low iron availability modulates the course of Chlamydia pneumoniae infection. Cell Microbiol 3:427–437PubMedCrossRefGoogle Scholar
  17. 17.
    Beatty WL, Byrne GI, Morrison RP (1993) Morphologic and antigenic characterization of interferon γ-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci USA 90:3998–4002PubMedCrossRefGoogle Scholar
  18. 18.
    Clark RB, Schatzki PF, Dalton HP (1982) Ultrastructural analysis of the effects of erythromycin on the morphology and developmental cycle of Chlamydia trachomatis HAR-13. Arch Microbiol 133:278–282PubMedCrossRefGoogle Scholar
  19. 19.
    Coles AM, Reynolds DJ, Harper A, Devitt A, Pearce JH (1993) Low-nutrient induction of abnormal chlamydial development: a novel component of chlamydial pathogenesis? FEMS Microbiol Lett 106:193–200PubMedCrossRefGoogle Scholar
  20. 20.
    Kutlin A, Roblin PM, Hammerschlag MR (1999) In vitro activities of azithromycin and ofloxacin against Chlamydia pneumoniae in a continuous-infection model. Antimicrob Agents Chemother 43:2268–2272PubMedGoogle Scholar
  21. 21.
    Moulder JW, Levy NJ, Schulman LP (1980) Persistent infection of mouse fibroblasts (L cells) with Chlamydia psittaci: evidence for a cryptic chlamydial form. Infect Immun 30:874–883PubMedGoogle Scholar
  22. 22.
    Heinemann M, Susa M, Simnacher U, Marre R, Essig A (1996) Growth of Chlamydia pneumoniae induces cytokine production and expression of CD14 in a human monocytic cell line. Infect Immun 64:4872–4875PubMedGoogle Scholar
  23. 23.
    Wahl C, Oswald F, Simnacher U, Weiss S, Marre R, Essig A (2001) Survival of Chlamydia pneumoniae-infected Mono Mac 6 cells is dependent on NF-κB binding activity. Infect Immun 69:7039–7045PubMedCrossRefGoogle Scholar
  24. 24.
    Numazaki K, Chiba S (1996) Serum γ-interferon in patients with pneumonia caused by Chlamydia pneumoniae. Pediatr Infect Dis J 15:174–175PubMedCrossRefGoogle Scholar
  25. 25.
    Penttilä JM, Anttila M, Puolakkainen M, Laurila A, Varkila K, Sarvas M, Mäkelä PH, Rautonen N (1998) Local immune responses to Chlamydia pneumoniae in the lungs of BALB/c mice during primary infection and reinfection. Infect Immun 66:5113–5118PubMedGoogle Scholar
  26. 26.
    Mathews S, George C, Flegg C, Stenzel D, Timms P (2001) Differential expression of ompA, ompB, pyk, nlpD and Cpn0585 genes between normal and interferon-γ treated cultures of Chlamydia pneumoniae. Microb Pathog 30:337–345PubMedCrossRefGoogle Scholar
  27. 27.
    Mäurer AP, Mehlitz A, Mollenkopf HJ, Meyer TF (2007) Gene expression profiles of Chlamydophila pneumoniae during the developmental cycle and iron depletion-mediated persistence. PLoS Pathog 3:e83PubMedCrossRefGoogle Scholar
  28. 28.
    Ouellette SP, Hatch TP, AbdelRahman YM, Rose LA, Belland RJ, Byrne GI (2006) Global transcriptional upregulation in the absence of increased translation in Chlamydia during IFNγ-mediated host cell tryptophan starvation. Mol Microbiol 62:1387–1401PubMedCrossRefGoogle Scholar
  29. 29.
    Polkinghorne A, Hogan RJ, Vaughan L, Summersgill JT, Timms P (2005) Differential expression of chlamydial signal transduction genes in normal and interferon γ-induced persistent Chlamydophila pneumoniae infections. Microbes Infect 8:61–72PubMedCrossRefGoogle Scholar
  30. 30.
    Slepenkin A, Motin V, de la Maza LM, Peterson EM (2003) Temporal expression of type III secretion genes of Chlamydia pneumoniae. Infect Immun 71:2555–2562PubMedCrossRefGoogle Scholar
  31. 31.
    Timms P, Good D, Wan C, Theodoropoulos C, Mukhopadhyay S, Summersgill J, Mathews S (2009) Differential transcriptional responses between the interferon-gamma-induction and iron-limitation models of persistence for Chlamydia pneumoniae. J Microbiol Immunol Infect 42:27–37PubMedGoogle Scholar
  32. 32.
    Airenne S, Surcel HM, Alakärppä H, Laitinen K, Paavonen J, Saikku P, Laurila A (1999) Chlamydia pneumoniae infection in human monocytes. Infect Immun 67:1445–1449PubMedGoogle Scholar
  33. 33.
    Gieffers J, Füllgraf H, Jahn J, Klinger M, Dalhoff K, Katus HA, Solbach W, Maass M (2001) Chlamydia pneumoniae infection in circulating human monocytes is refractory to antibiotic treatment. Circulation 103:351–356PubMedGoogle Scholar
  34. 34.
    Haranaga S, Yamaguchi H, Ikejima H, Friedman H, Yamamoto Y (2003) Chlamydia pneumoniae infection of alveolar macrophages: a model. J Infect Dis 187:1107–1115PubMedCrossRefGoogle Scholar
  35. 35.
    Klos A, Thalmann J, Peters J, Gérard HC, Hudson AP (2009) The transcript profile of persistent Chlamydophila (Chlamydia) pneumoniae in vitro depends on the means by which persistence is induced. FEMS Microbiol Lett 29:120–126CrossRefGoogle Scholar
  36. 36.
    Hsia RC, Pannekoek Y, Ingerowski E, Bavoil PM (1997) Type III secretion genes identify a putative virulence locus of Chlamydia. Mol Microbiol 25:351–359PubMedCrossRefGoogle Scholar
  37. 37.
    Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759PubMedCrossRefGoogle Scholar
  38. 38.
    Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T (2004) A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci USA 101:10166–10171PubMedCrossRefGoogle Scholar
  39. 39.
    Lugert R, Kuhns M, Polch T, Gross U (2004) Expression and localization of type III secretion-related proteins of Chlamydia pneumoniae. Med Microbiol Immunol 193:163–171PubMedCrossRefGoogle Scholar
  40. 40.
    Müller N, Sattelmacher F, Lugert R, Gross U (2008) Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins. Med Microbiol Immunol 197:387–396PubMedCrossRefGoogle Scholar
  41. 41.
    Subtil A, Delevoye C, Balañá ME, Tastevin L, Perrinet S, Dautry-Varsat A (2005) A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. Mol Microbiol 56:1636–1647PubMedCrossRefGoogle Scholar
  42. 42.
    Slepenkin A, Enquist PA, Hägglund U, de la Maza LM, Elofsson M, Peterson EM (2007) Reversal of the antichlamydial activity of putative type III secretion inhibitors by iron. Infect Immun 75:3478–3489PubMedCrossRefGoogle Scholar
  43. 43.
    Cles LD, Stamm WE (1990) Use of HL cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol 28:938–940PubMedGoogle Scholar
  44. 44.
    Ekman MR, Grayston JT, Visakorpi R, Kleemola M, Kuo CC, Saikku P (1993) An epidemic of infections due to Chlamydia pneumoniae in military conscripts. Clin Infect Dis 17:420–425PubMedCrossRefGoogle Scholar
  45. 45.
    Summersgill JT, Sahney NN, Gaydos CA, Quinn TC, Ramirez JA (1995) Inhibition of Chlamydia pneumoniae growth in HEp-2 cells pretreated with gamma interferon and tumor necrosis factor alpha. Infect Immun 63:2801–2803PubMedGoogle Scholar
  46. 46.
    Mannonen L, Nikula T, Haveri A, Reinikainen A, Vuola JM, Lahesmaa R, Puolakkainen M (2007) Up-regulation of host cell genes during interferon-γ-induced persistent Chlamydia pneumoniae infection in HL cells. J Infect Dis 195:212–219PubMedCrossRefGoogle Scholar
  47. 47.
    Airaksinen U, Penttilä T, Wahlström E, Vuola JM, Puolakkainen M, Sarvas M (2003) Production of Chlamydia pneumoniae proteins in Bacillus subtilis and their use in characterizing immune responses in the experimental infection model. Clin Diagn Lab Immunol 10:367–375PubMedGoogle Scholar
  48. 48.
    Hefty PS, Stephens RS (2007) Chlamydial type III secretion system is encoded on ten operons preceded by sigma 70-like promoter elements. J Bacteriol 189:198–206PubMedCrossRefGoogle Scholar
  49. 49.
    Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P (2004) Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72:1843–1855PubMedCrossRefGoogle Scholar
  50. 50.
    Bannantine JP, Griffiths RS, Viratyosin W, Brown WJ, Rockey DD (2000) A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell Microbiol 2:35–47PubMedCrossRefGoogle Scholar
  51. 51.
    Hackstadt T, Fischer ER, Scidmore MA, Rockey DD, Heinzen RA (1997) Origins and functions of the chlamydial inclusion. Trends Microbiol 5:288–293PubMedCrossRefGoogle Scholar
  52. 52.
    Hackstadt T, Scidmore-Carlson MA, Shaw EI, Fischer ER (1999) The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol 1:119–130PubMedCrossRefGoogle Scholar
  53. 53.
    Paumet F, Wesolowski J, Garcia-Diaz A, Delevoye C, Aulner N, Shuman HA, Subtil A, Rothman JE (2009) Intracellular bacteria encode inhibitory SNARE-like proteins. PLoS ONE 4:e7375PubMedCrossRefGoogle Scholar
  54. 54.
    Wyrick PB (2000) Intracellular survival by Chlamydia. Cell Microbiol 2:275–282PubMedCrossRefGoogle Scholar
  55. 55.
    Watson MW, Clarke IN, Everson JS, Lambden PR (1995) The CrP operon of Chlamydia psittaci and Chlamydia pneumoniae. Microbiology 141:2489–2497PubMedCrossRefGoogle Scholar
  56. 56.
    Heuer D, Brinkmann V, Meyer TF, Szczepek AJ (2003) Expression and translocation of chlamydial protease during acute and persistent infection of the epithelial HEp-2 cells with Chlamydophila (Chlamydia) pneumoniae. Cell Microbiol 5:315–322PubMedCrossRefGoogle Scholar
  57. 57.
    Dong F, Su H, Huang Y, Zhong Y, Zhong G (2004) Cleavage of host keratin 8 by a Chlamydia-secreted protease. Infect Immun 72:3863–3868PubMedCrossRefGoogle Scholar
  58. 58.
    Kumar Y, Valdivia RH (2008) Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 4:159–169PubMedCrossRefGoogle Scholar
  59. 59.
    Hogan RJ, Mathews SA, Kutlin A, Hammerschlag MR, Timms P (2003) Differential expression of genes encoding membrane proteins between acute and continuous Chlamydia pneumoniae infections. Microb Pathog 34:11–16PubMedCrossRefGoogle Scholar
  60. 60.
    Nicholson TL, Olinger L, Chong K, Schoolnik G, Stephens RS (2003) Global stage-specific gene regulation during the developmental cycle of Chlamydia trachomatis. J Bacteriol 185:3179–3189PubMedCrossRefGoogle Scholar
  61. 61.
    Gérard HC, Köhler L, Branigan PJ, Zeidler H, Schumacher HR, Hudson AP (1998) Viability and gene expression in Chlamydia trachomatis during persistent infection of cultured human monocytes. Med Microbiol Immunol 187:115–120PubMedCrossRefGoogle Scholar
  62. 62.
    Koehler L, Nettelnbreker E, Hudson AP, Ott N, Gérard HC, Branigan PJ, Schumacher HR, Drommer W, Zeidler H (1997) Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes. Microb Pathog 22:133–142PubMedCrossRefGoogle Scholar
  63. 63.
    Schmitz E, Nettelnbreker E, Zeidler H, Hammer M, Manor E, Wollenhaupt J (1993) Intracellular persistence of chlamydial major outer-membrane protein, lipopolysaccharide and ribosomal RNA after non-productive infection of human monocytes with Chlamydia trachomatis serovar K. J Med Microbiol 38:278–285PubMedCrossRefGoogle Scholar
  64. 64.
    Bailey L, Gylfe A, Sundin C, Muschiol S, Elofsson M, Nordström P, Henriques-Normark B, Lugert R, Waldenström A, Wolf-Watz H, Bergström S (2007) Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle. FEBS Lett 581:587–595PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Laura Mannonen
    • 1
    • 2
    Email author
  • Eveliina Markkula
    • 1
  • Mirja Puolakkainen
    • 1
    • 2
  1. 1.Department of Virology, Haartman InstituteUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Virology and Immunology, HUSLABHelsinki University Central HospitalHelsinkiFinland

Personalised recommendations