Skip to main content
Log in

TGF-β and CD23 are involved in nitric oxide production by pulmonary macrophages activated by β-glucan from Paracoccidioides brasiliensis

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Pulmonary macrophages (PM), which are CD11b/CD18+ and CD23+, may be involved in the onset of inflammatory events caused by Paracoccidioides brasiliensis in the lungs. In the present study, we measured the nitric oxide (NO) and interleukin in PM production after intratracheal (i.t.) inoculation of an enriched β-glucan cell wall fraction from P. brasiliensis (Fraction F1). BALB/c and C57/BL6 (B6) mice were i.t. treated with Fraction F1, and their PM were restimulated in vitro with LPS and interferon-γ up to 14 days after treatment. Macrophages BALB/c mice produced less NO than PM from B6 mice. The lower NO production was caused by higher production of TGF-β by pulmonary macrophages of BALB/c and was abrogated by anti-TGF-β MoAb in vitro and in vivo. Other interleukins such as IL-10, IL-4 and a combination of IL-1, TNF-α and IL-6 were not involved in NO production induced by Fraction F1. Expression of CD11b increases and expression of CD23 decreases on PM of BALB/c mice after in vivo treatment whereas PM of B6 mice do not show a variation of their phenotype. Moreover, the ability of pulmonary macrophages to induce lymphocyte proliferation was reduced in mixed cultures of CD11b+ or CD23+ macrophages but was restored when lymphocytes were cultivated in the presence of NO inhibitor (L-NMMA). Thus, the results presented herein indicate that in BALB/c but not in B6 mice TGF-ß is strongly induced by Fraction 1 in PM in vivo and suppresses NO production. Low NO production by PM is associated with a change in CD11b/CD23 expression and with a high lymphocyte proliferative response. Thus, CD11b+/CD23+ PM modulate NO and TGF-β production in the pulmonary microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tournier JN, Mohamadzadeh M (2008) Microenvironmental impact on lung cell homeostasis and immunity during infection. Exp Rev Vaccines 4:457–466

    Article  Google Scholar 

  2. Waldorf AR (1989) Pulmonary defense mechanisms against opportunistic fungal pathogens. Immunol Ser 47:243–271

    CAS  PubMed  Google Scholar 

  3. Restrepo S, Tobon A, Trujillo J et al (1992) Development of pulmonary fibrosis in mice during infection with Paracoccidioides brasiliensis conidia. J Med Vet Mycol 3:173–184

    Article  Google Scholar 

  4. Calich VL, Costa TA, Felonato M et al (2008) Innate immunity to Paracoccidioides brasiliensis infection. Mycopathologia 165(4–5):223–236

    Article  PubMed  Google Scholar 

  5. González A, Restrepo A, Cano LE (2008) Pulmonary immune responses induced in BALB/c mice by Paracoccidioides brasiliensis conidia. Mycopathologia 165(4–5):313–330

    Article  PubMed  Google Scholar 

  6. Silva MF, Bocca AL, Ferracini R et al (1997) Cellular requirements for immunomodulatory effects caused by cell wall components of Paracoccidioides brasiliensis on antibody production. Clin Exp Immunol 109(2):261–271

    Article  CAS  PubMed  Google Scholar 

  7. Jeevan A, Majorov K, Sawant K et al (2007) Lung macrophages from bacille Calmette-Guérin-vaccinated guinea pigs suppress T cell proliferation but restrict intracellular growth of M. tuberculosis after recombinant guinea pig interferon-gamma activation. Clin Exp Immunol 149(2):387–398

    Article  CAS  PubMed  Google Scholar 

  8. Bunn HJ, Hewitt CR, Grigg J (2002) Suppression of autologous peripheral blood mononuclear cell proliferation by alveolar macrophages from young infants. Clin Exp Immunol 128(2):313–317

    Article  CAS  PubMed  Google Scholar 

  9. Pina A, Valente-Ferreira RC, Molinari-Madlum EEW et al (2004) Absence of interleukin-4 determines less severe pulmonary paracoccidioidomycosis associated with impaired Th2 response. Infect Immun 72(4):2369–2378

    Article  CAS  PubMed  Google Scholar 

  10. Cano LE, Kashino SS, Arruda C et al (1998) Protective role of gamma interferon in experimental pulmonary paracoccidioidomycosis. Infect Immun 66(2):800–806

    CAS  PubMed  Google Scholar 

  11. Conrad DH, Ford JW, Sturgill JL et al (2007) CD23: an overlooked regulator of allergic disease. Curr Allergy Asthma Rep 7(5):331–337

    Article  CAS  PubMed  Google Scholar 

  12. Jaffar Z, Ferrini ME, Buford MC et al (2007) Prostaglandin I2-IP signaling blocks allergic pulmonary inflammation by preventing recruitment of CD4+ Th2 cells into the airways in a mouse model of asthma. J Immunol 179(9):6193–6203

    CAS  PubMed  Google Scholar 

  13. Wan YY, Flavell RA (2007) Regulatory T cells, transforming growth factor-beta, and immune suppression. Proc Am Thorac Soc 4(3):271–276

    Article  CAS  PubMed  Google Scholar 

  14. Ortiz LA, Dutreil M, Fattman C et al (2007) Interleukin 1 receptor antagonist mediates the anti-inflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104(26):11002–11007

    Article  CAS  PubMed  Google Scholar 

  15. Harris NL, Prout M, Peach RJ et al (2001) CD80 costimulation is required for Th2 cell cytokine production but not for antigen-specific accumulation and migration into the lung. J Immunol 166(8):4908–4914

    CAS  PubMed  Google Scholar 

  16. Lumsden JM, Roberts JM, Harris NL et al (2000) Differential requirement for CD80 and CD80/CD86-dependent costimulation in the lung immune response to an influenza virus infection. J Immunol 164(1):79–85

    CAS  PubMed  Google Scholar 

  17. Chiang LY, Sheppard DC, Gravelat FN et al (2008) Aspergillus fumigatus stimulates leukocyte adhesion molecules and cytokine production by endothelial cells in vitro and during invasive pulmonary disease. Infect Immun 76(8):3429–3438

    Article  CAS  PubMed  Google Scholar 

  18. Filler SG, Pfunder AS, Spellberg BJ, Spellberg JP, Edwards JE Jr (1996) Candida albicans stimulates cytokine production and leukocyte adhesion molecule expression by endothelial cells. Infect Immun 64(7):2609–2617

    CAS  PubMed  Google Scholar 

  19. Bedirli A, Kerem M, Pasaoglu H et al (2007) Beta-glucan attenuates inflammatory cytokine release and prevents acute lung injury in an experimental model of sepsis. Shock 27(4):397–401

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez A, Lenzi HL, Motta EM (2005) Expression of adhesion molecules in lungs of mice infected with Paracoccidioides brasiliensis conidia. Microbes Infect 7:666–673

    CAS  PubMed  Google Scholar 

  21. Pina A, Bernardino S, Calich VL (2008) Alveolar macrophages from susceptible mice are more competent than those of resistant mice to control initial Paracoccidioides brasiliensis infection. J Leukoc Biol 83(5):1088–1099

    Article  CAS  PubMed  Google Scholar 

  22. Oliveira SL, Silva MF, Soares AMVC et al (1993) Cell wall fractions from Paracoccidioides brasiliensis induce hypergammaglobulinemia. Mycopathologia 121:1–5

    Article  PubMed  Google Scholar 

  23. Alves L, Figueiredo F, Brandão-Filho SL et al (1987) The role of fractions from Paracoccidioides brasiliensis in the genesis of inflammatory response. Mycopathologia 97:3–7

    Article  CAS  PubMed  Google Scholar 

  24. Kolb JP, Paul-Eugene N, Damais C et al (1994) Interleukine-4 stimulates cGMP production by IFN-γ activated human monocytes. Involvement of the nitric oxide synthase pathway. J Biol Chem 269:9811–9816

    CAS  PubMed  Google Scholar 

  25. Hendrzak JA, Wallace PK, Morahan PS (1994) Optimizing the detection of cell surface antigens on elicited or activated mouse peritoneal macrophages. Cytometry 17:349–356

    Article  CAS  PubMed  Google Scholar 

  26. Calich VL, Singer-Vermes LM, Siqueira AM et al (1985) Susceptibility and resistance of inbred mice to Paracoccidioides brasiliensis. Br J Exp Pathol 66(5):585–594

    CAS  PubMed  Google Scholar 

  27. Scott P (1991) IFN-γ modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol 147:3149–3152

    CAS  PubMed  Google Scholar 

  28. Guillot L, Carroll SF, Homer R et al (2008) Enhanced innate immune responsiveness to pulmonary Cryptococcus neoformans infection is associated with resistance to progressive infection. Infect Immun 76(10):4745–4756

    Article  CAS  PubMed  Google Scholar 

  29. Rivera A, Ro G, Van Epps HL et al (2006) Innate immune activation and CD4+ T cell priming during respiratory fungal infection. Immunity 25(4):527–529

    Article  Google Scholar 

  30. Romani L (2008) Cell mediated immunity to fungi: a reassessment. Med Mycol 46(6):515–529

    Article  CAS  PubMed  Google Scholar 

  31. Arruda C, Franco MF, Kashino SS et al (2002) Interleukin-12 protects mice against disseminated infection caused by Paracoccidioides brasiliensis but enhances pulmonary inflammation. Clin Immunol 103(2):185–195

    Article  CAS  PubMed  Google Scholar 

  32. Li Q, Guo Z, Xu X et al (2008) Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation. Eur J Immunol 38(10):2751–2761

    Article  CAS  PubMed  Google Scholar 

  33. Bellinghausen I, König B, Böttcher I et al (2006) Inhibition of human allergic T-helper type 2 immune responses by induced regulatory T cells requires the combination of interleukin-10-treated dendritic cells and transforming growth factor-beta for their induction. Clin Exp Allergy 36(12):1546–1555

    Article  CAS  PubMed  Google Scholar 

  34. Huter EN, Punkosdy GA, Glass DD et al (2008) TGF-β induced Foxp3+ regulatory T cells rescue scurfy mice. Eur J Immunol 38(7):1814–1821

    Article  CAS  PubMed  Google Scholar 

  35. Villamón E, Gozalbo D, Roig P et al (2004) Toll-like receptor 2 is dispensable for acquired host immune resistance to Candida albicans in a murine model of disseminated candidiasis. Microbes Infect 6(6):542–548

    Article  PubMed  Google Scholar 

  36. Netea MG, Sutmuller R, Hermann C et al (2004) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172(6):3712–3718

    CAS  PubMed  Google Scholar 

  37. Ferreira KS, Bastos KR, Russo M et al (2007) Interaction between Paracoccidioides brasiliensis and pulmonary dendritic cells induces interleukin-10 production and Toll-Like receptor–2 expression: possible mechanisms of susceptibility. J Infect Dis 196(7):1108–1115

    Article  CAS  PubMed  Google Scholar 

  38. Swain SL, Huston G, Tonkonogy S et al (1991) Transforming growth factor-b and IL-4 cause helper T cell precursors to develop into distinct effector helper cells that differ in lymphokine secretion pattern and cell surface phenotype. J Immunol 147:2991–2994

    CAS  PubMed  Google Scholar 

  39. Schmitt E, Hoehn P, Huels C et al (1994) T helper type 1 development of naive CD41 T cells requires the coordinate action of interleukin-12 and interferon-g and is inhibited by transforming growth factor-b. Eur J Immunol 24:793–796

    Article  CAS  PubMed  Google Scholar 

  40. Pawelec G, Rehbein A, Schlotz E et al (1996) Cytokine modulation of Th1/Th2 phenotype differentiation in directly alloresponsive CD41 human T cells. Transplantation 62:1095–1099

    Article  CAS  PubMed  Google Scholar 

  41. Hoehn P, Goedert S, Germann T et al (1995) Opposing effects of TGF-b2 on the Th1 cell development of naive CD41 T cells isolated from different mouse strains. J Immunol 155:3788–3791

    CAS  PubMed  Google Scholar 

  42. Skeen MJ, Miller MA, Shinnick TM et al (1996) Regulation of murine macrophage IL-12 production: activation of macrophages in vivo, restimulation in vitro, and modulation by other cytokines. J Immunol 156:1196–1198

    CAS  PubMed  Google Scholar 

  43. Takeuchi M, Alard P, Streilein JW (1998) TGF-b promotes immune deviation by altering accessory signals of antigen-presenting cells. J Immunol 160:1589–1591

    CAS  PubMed  Google Scholar 

  44. Bogdan C, Paik J, Vodovotz Y et al (1992) Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-b and interleukin-10. J Biol Chem 267:23301–23303

    CAS  PubMed  Google Scholar 

  45. Vodovotz Y, Bogdan C, Paik J et al (1993) Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor-b. J Exp Med 178:605–609

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CNPq—Conselho Tecnológico de Pesquisa e Desenvolvimento, FAPESP—Fundação de Amparo à Pesquisa do Estado de São Paulo; Programa de Apoio a Pesquisa da Universidade de Uberaba—PAPE-UNIUBE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Fernandes da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Pádua Queiroz, L., Mattos, M.E., da Silva, M.F. et al. TGF-β and CD23 are involved in nitric oxide production by pulmonary macrophages activated by β-glucan from Paracoccidioides brasiliensis . Med Microbiol Immunol 199, 61–69 (2010). https://doi.org/10.1007/s00430-009-0138-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-009-0138-1

Keywords

Navigation