Skip to main content

Advertisement

Log in

Prophylactic effect of bacteriophages on mice subjected to chemotherapy-induced immunosuppression and bone marrow transplant upon infection with Staphylococcus aureus

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Due to the increased resistance of bacteria to antibiotics, phage therapy may be an alternative to treat or prevent suppurative infections in immunocompromised patients. The authors’ recent studies indicated that such an approach is particularly beneficial in immunosuppressed mice. A5/L bacteriophages, specific for the Staphylococcus aureus strain L, were tested for their ability to protect CBA mice subjected to myeloablative (busulfan) and immunosuppressive (cyclophosphamide) conditioning followed by a syngeneic bone marrow transplantation (BMT) and infected with a sublethal or lethal dose of bacteria. The application of phages to immunocompromised mice given BMT led to a significant (>90%) reduction in bacterial load in the spleen and liver. Moreover, 72% of such mice attained long-term survival versus 8.2% survival of mice not treated with phages. Analysis of leukocyte number and blood cell type composition revealed that phage application increased the leukocyte numbers and neutrophil content in the circulating blood. Moreover, phage application led to an increased content of the myelocytic cell lineage in the bone marrow. The protective effects of phages in immunosuppressed mice are both direct (bacteriolytic) and indirect (by stimulation of myelopoiesis). The results suggest a potential benefit of phage therapy in immunocompromised patients subjected to bone marrow transplant procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Serody JS, Shea TC (1997) Prevention of infection in bone marrow transplant recipients. Infect Dis Clin North Am 11:459–477

    Article  CAS  PubMed  Google Scholar 

  2. Attal M, Schlaifer D, Rubie H et al (1991) Prevention of gram-positive infections after bone marrow transplantation by systemic vancomycin: a prospective, randomized trial. J Clin Oncol 9:865–870

    CAS  PubMed  Google Scholar 

  3. Arns da Cunha C, Weisdorf D, Shu XO, DeFor T, Pastor JD 3rd, Johnson JR (1998) Early gram-positive bacteremia in BMT recipients: impact of three different approaches to antimicrobial prophylaxis. Bone Marrow Transplant 21:173–180

    Article  CAS  PubMed  Google Scholar 

  4. Schots R, Trullemans F, Van Riet I et al (2000) The clinical impact of early gram-positive bacteremia and the use of vancomycin after allogeneic bone marrow transplantation. Transplantation 69:1511–1514

    Article  CAS  PubMed  Google Scholar 

  5. Broun ER, Wheat JL, Kneebone P et al (1994) Randomized trial of the addition of gram-positive prophylaxis to standard antimicrobial prophylaxis for patients undergoing autologous bone marrow transplantation. Antimicrob Agents Chemother 38:576–579

    CAS  PubMed  Google Scholar 

  6. Górski A, Międzybrodzki R, Borysowski J et al (2009) Bacteriophage therapy for the treatment of infections. Curr Opin Investig Drugs 10:766–774

    PubMed  Google Scholar 

  7. Sawyer RG, Adams RB, May AK, Rosenlof LK, Pruett TL (1993) Anti-tumor necrosis factor antibody reduces mortality in the presence of antibiotic-induced tumor necrosis factor release. Arch Surg 128:73–77

    CAS  PubMed  Google Scholar 

  8. Cui W, Lei MG, Silverstein R, Morrison DC (2003) Differential modulation of the induction of inflammatory mediators by antibiotics in mouse macrophages in response to viable Gram-positive and Gram-negative bacteria. J Endotoxin Res 9:225–236

    Article  CAS  PubMed  Google Scholar 

  9. Zimmerman RA, Klesius PH, Krushak DH, Mathews JH (1975) Effects of penicillin on the humoral and cellular immune response following group A streptococcal pharyngitis. Can J Com Med 39:227–230

    CAS  Google Scholar 

  10. Couderc J, Perrodon Y, Ventura M et al (1983) Specification of the immune response: its suppression induced by chloramphenicol in vitro. Biosci Rep 3:19–29

    Article  CAS  PubMed  Google Scholar 

  11. Kristian SA, Timmer AM, Liu GY et al (2007) Impairment of innate immune killing mechanisms by bacteriostatic antibiotics. FASEB J 21:1107–1116

    Article  CAS  PubMed  Google Scholar 

  12. Weber-Dąbrowska B, Zimecki M, Mulczyk M (2000) Effective phage therapy is associated with normalization of cytokine production by blood cell cultures. Arch Immunol Ther Exp 48:31–38

    Google Scholar 

  13. Weber-Dąbrowska B, Zimecki M, Mulczyk M, Górski A (2002) Effect of phage therapy on the turnover and function of peripheral neutrophils. FEMS Immunol Med Microb 34:135–138

    Article  Google Scholar 

  14. Przerwa A, Zimecki M, Switała-Jeleń K et al (2006) Effects of bacteriophages on free radical production and phagocytic functions. Med Microbiol Immunol 195:143–150

    Article  CAS  PubMed  Google Scholar 

  15. Międzybrodzki R, Świtała-Jeleń K, Fortuna W et al (2008) Bacteriophage preparation inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes. Virus Res 131:233–242

    Article  PubMed  Google Scholar 

  16. Dąbrowska K, Opolski A, Wietrzyk J et al (2004) Anticancer avtivity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models. Anticancer Res 24:3991–3995

    PubMed  Google Scholar 

  17. Dąbrowska K, Skaradziński G, Jończyk P et al (2009) The effect of bacteriophages T4 and HAP1 on in vitro melanoma migration. BMC Microbiol 9:13–22

    Article  PubMed  Google Scholar 

  18. Borysowski J, Górski A (2008) Is phage therapy acceptable in the immunocompromised host? Int J Infect Dis 12:466–471

    Article  PubMed  Google Scholar 

  19. Zimecki M, Artym J, Kocięba M et al (2009) Effects of prophylactic administration of bacteriophages in immunosuppressed mice infected with Staphylococcus aureus. BMC Microbiol 9:169

    Article  PubMed  Google Scholar 

  20. Hassan Z, Hellstrom-Lindberg E, Alsadi S et al (2002) The effect of modulation of glutathione cellular content on busulfan-induced cytotoxicity on hematopoietic cells in vitro and in vivo. Bone Marrow Transplant 30:141–147

    Article  CAS  PubMed  Google Scholar 

  21. Hemendinger RA, Bloom SE (1996) Selective mitomycin C and cyclophosphamide induction of apoptosis in differentiating B lymphocytes compared to T lymphocytes in vivo. Immunopharmacology 35:71–82

    Article  CAS  PubMed  Google Scholar 

  22. Vogels MT, Hermsen CC, Huys HL et al (1994) Roles of tumor necrosis factor, platelet-activating factor and arachidonic acid metabolites in interleukin 1-induced resistance to infection in neutropenic mice. Infect Immun 62:2065–2070

    CAS  PubMed  Google Scholar 

  23. Artym J, Zimecki M, Kuryszko J, Kruzel ML (2005) Lactoferrin accelerates reconstitution of the humoral and cellular immune response during chemotherapy-induced immunosuppression and bone marrow transplant in mice. Stem Cell Dev 14:548–555

    Article  CAS  Google Scholar 

  24. Zimecki M, Weber-Dąbrowska B, Łusiak-Szelachowska M et al (2003) Bacteriophages provide regulatory signals in mitogen-induced murine splenocyte proliferation. Cell Mol Biol Lett 8:699–711

    PubMed  Google Scholar 

  25. Soothhill JS (1992) Treatment of experimental infections of mice with bacteriophages. J Med Microbiol 37:258–261

    Article  Google Scholar 

  26. Zimecki M, Kocięba M, Weber-Dąbrowska B et al (2007) Effects of bacteriophages on clearance of Pseudomonas aeruginosa and Staphylococcus aureus and serum cytokine levels in infected mice. EJPAU 10(3)

  27. Zimecki M, Artym J, Kocieba M et al (2008) The concerted action of lactoferrin and bacteriophages in the clearance of bacteria in sublethally infected mice. Postepy Hig Med Dosw 62:42–46

    Google Scholar 

  28. Sparrelid E, Hagglund H, Remberger M et al (1998) Bacteraemia during the aplastic phase after allogeneic bone marrow transplantation is associated with early death from invasive fungal infection. Bone Marrow Transplant 22:795–800

    Article  CAS  PubMed  Google Scholar 

  29. Buhles WC Jr, Shifrine M (1978) Increased bone marrow production of granulocytes and mononuclear phagocytes induced by mycobacterial adjuvants: improved recovery of leucopoiesis in mice after cyclophosphamide treatment. Infect Immun 20:58–65

    CAS  PubMed  Google Scholar 

  30. Karpova MR, Zvevea IF, Novitsky VV (1999) The effect of different infectious agents on the intensification of hepatopoiesis during immunosuppression. Zh Mikrobiol Epidemiol Immunobiol 6:63–67

    PubMed  Google Scholar 

  31. Lyerova L, Viklicky O, Nemcova D, Teplan V (2008) The incidence of infectious diseases after renal transplantation: a single-centre experience. Int J Antimicrob Agents 31(Suppl 1):S58–S62

    CAS  PubMed  Google Scholar 

  32. Puig N, de la Rubia J, Jarque I et al (2007) A study of incidence and characteristics of infections in 476 patients from a single center undergoing autologous blood stem cell transplantation. Int J Hematol 86:186–192

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant No. 2PO5A 199 29 from the Polish Ministry of Education. We thank Ms Krystyna Spiegel for excellent technical assistance.

Conflict of interest statement

The authors declare no conflict of interest except of Andrzej Górski and Beata Weber-Dąbrowska who have pending patent application for preparation of S. aureus phages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Zimecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimecki, M., Artym, J., Kocięba, M. et al. Prophylactic effect of bacteriophages on mice subjected to chemotherapy-induced immunosuppression and bone marrow transplant upon infection with Staphylococcus aureus . Med Microbiol Immunol 199, 71–79 (2010). https://doi.org/10.1007/s00430-009-0135-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-009-0135-4

Keywords

Navigation