Skip to main content

Advertisement

Log in

A recombinant enolase from Anisakis simplex is differentially recognized in natural human and mouse experimental infections

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

A 1,963-bp cDNA was isolated from an Anisakis simplex cDNA library by immunoscreening with a hyperimmune rabbit serum raised against a crude extract of A. simplex L3 larvae. The open reading frame encodes a putative protein of 436 amino acid residues, which exhibits high similarity (70–80%) to enolase molecules from various other organisms, including helminth parasites. After subcloning and expression of the A. simplex cDNA in PGEX-4T-3, the resulting glutathione S-transferase fusion protein, purified by glutathione-Sepharose-4B chromatography, showed functional enolase activity. The immunogenicity of the recombinant A. simplex enolase was analyzed by immunoblotting using sera obtained from (a) mice immunized with crude extracts (CE) of A. simplex, or other nematode species, (b) mice immunized with excretory–secretory (ES) antigens from A. simplex, or (c) mice infected with L3 larvae by the intraperitoneal route. In addition, we used ELISA, to investigate the presence of IgG1 and IgE antibodies against this molecule in sera from patients infected with A. simplex. Mouse sera obtained after infection with L3 or raised against CE antigens, but not sera raised against ES antigens, showed strong reactivity with the recombinant A. simplex enolase. We also obtained good reactivity in Western blotting with sera from mice immunized with CE antigens from Ascaris suum and Toxocara canis, but not with sera from mice immunized with CE antigens from Trichuris muris, Trichinella spiralis or Hysterothylacium aduncum. In contrast to the experimental infections/immunizations in mice, we were unable to detect anti-enolase IgE antibodies in sera from human patients infected with A.simplex (15 sera), and the levels of anti-enolase IgG1 antibodies in these sera were low and apparently nonspecific. These results seem to indicate that, during natural infection in humans, A. simplex larvae do not offer sufficient antigenic stimulus to induce anti-enolase antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arrieta I, del Barrio M, Vidarte L, del Pozo V, Pastor C, González-Cabrero J, Cardaba B, Rojo M, Mínguez A, Cortegano I, Gallardo S, Aceituno E, Palomino P, Vivanco F. Lahoz C (2000) Molecular cloning and characterization of an IgE-reactive protein from Anisakis simplex: Ani s 1. Mol Biochem Parasitol 107:263–268

    Article  PubMed  Google Scholar 

  2. Asturias JA, Eraso E, Martínez A (2000) Cloning and high level expression in Escherichia coli of an Anisakis simplex tropomyosin isoform. Mol Biochem Parasitol 108:263–267

    Article  PubMed  Google Scholar 

  3. Audícana MT, Ansotegui IJ, de Corres LF, Kennedy MW (2002) Anisakis simplex: dangerous dead and alive?. Trends Parasitol 18:20–25

    Article  PubMed  Google Scholar 

  4. Audícana MT, del Pozo MD, Iglesias R, Ubeira FM (2003) Ansiakis simplex and Pseudoterranova decipiens. In: Bier JW, Miliotis MD (eds) International handbook of foodborne pathogens. Marcel Dekker, New York, pp 613–636

    Google Scholar 

  5. Babbitt PC, Hasson MS, Wedekin JE, Palmer DRJ, Barrett WC, Reed GH, Rayment I, Ringe D, Kenyon GL, Gerlt JA (1996) The enolase superfamily: a general strategy for enzyme catalyzed abstraction of the α-protons of carboxylic acids. Biochemistry 35:16489–16501

    Article  PubMed  Google Scholar 

  6. Baldo BA, Baker RS (1988) Inhalant allergies to fungi: reactions to bakers’ yeast (Saccharomyces cerevisiae) and identification of bakers’ yeast enolase as an important allergen. Int Arch Allergy Appl Immunol 86:201–208

    PubMed  Google Scholar 

  7. Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S (2001) alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287

    Article  PubMed  Google Scholar 

  8. Conde-Salazar L, Gonzalez MA, Guimaraens D (2002) Type I and type IV sensitization to Anisakis simplex in 2 patients with hand eczema. Contact Dermatitis 46:361

    Article  PubMed  Google Scholar 

  9. Del Pozo MD, Audicana M, Díez JM, Muñoz D, Ansotegui IJ, Fernandez E, Garcia M, Etxenagusia M, Moneo I, Fernandez de Corres L (1997) Anisakis simplex, a relevant etiologic factor in acute urticaria. Allergy 52:576–579

    PubMed  Google Scholar 

  10. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    PubMed  Google Scholar 

  11. Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A (2002) The Prosite database, its status in 2002. Nucleic Acids Res 30:235–238

    Article  PubMed  Google Scholar 

  12. Garraud O, Nkenfou C, Bradley JE, Perler FB, Nutman TB (1995) Identification of recombinant filarial proteins capable of inducing polyclonal and antigen-specific IgE and IgG4 antibodies. J Immunol 155:1316–1325

    PubMed  Google Scholar 

  13. Gulick AM, Schmidt DM, Gerlt JA, Rayment I (2001) Evolution of enzymatic activities in the enolase superfamily: crystal structures of the L-Ala-D/L-Glu epimerases from Escherichia coli and Bacillus subtilis. Biochemistry 40:15716–15724

    Article  PubMed  Google Scholar 

  14. Iglesias R, Leiro J, Ubeira FM, Santamarina MT, Sanmartín ML (1993) Anisakis simplex: antigen recognition and antibody production in experimentally infected mice. Parasite Immunol 15:243–250

    PubMed  Google Scholar 

  15. Iglesias R, Leiro J, Ubeira FM, Santamarina MT, Sanmartin ML (1995) Anisakis simplex: stage-specific antigens recognized by mice. J Helminthol 69:319–324

    PubMed  Google Scholar 

  16. Ito K, Ishiguro A, Kanbe T, Tanaka K, Torii S (1995) Characterization of IgE-binding epitopes on Candida albicans enolase. Clin Exp Allergy 25:529–535

    PubMed  Google Scholar 

  17. Jolodar A, Fischer P, Bergmann S, Buttner DW, Hammerschmidt S, Brattig NW (2003) Molecular cloning of an alpha-enolase from the human filarial parasite Onchocerca volvulus that binds human plasminogen. Biochim Biophys Acta 1627:111–120

    PubMed  Google Scholar 

  18. Kagei N, Isogaki H (1992) A case of abdominal syndrome caused by the presence of a large number of Anisakis larvae. Int J Parasitol 22:251–253

    Article  PubMed  Google Scholar 

  19. Kagei N, Orikasa H, Hori E, Sannomiya A, Yasumura Y (1995) A case of hepatic anisakiasis with a literal survey for extra-gastrointestinal anisakiasis. Jpn J Parasitol 44:346–351

    Google Scholar 

  20. Kennedy MW, Tierney J, Ye P, McMonagle FA, McIntosh A, McLaughlin D, Smith JW (1988) The secreted and somatic antigens of the third stage larva of Anisakis simplex, and antigenic relationship with Ascaris suum, Ascaris lumbricoides, and Toxocara canis. Mol Biochem Parasitol 31:35–46

    Article  PubMed  Google Scholar 

  21. Lebioda L, Stec B (1991) Mechanism of enolase: the crystal structure of enolase-Mg2+-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2 Å resolution. Biochemistry 30:2817–2822

    Article  PubMed  Google Scholar 

  22. Lebioda L, Stec B, Brewer JM (1989) The structure of yeast enolase at 2.25-Å resolution. An 8-fold beta + alpha-barrel with a novel beta beta alpha alpha (beta alpha)6 topology. J Biol Chem 264:3685–3693

    PubMed  Google Scholar 

  23. Lorenzo S, Iglesias R, Leiro J, Ubeira FM, Ansotegui I, García M, Fernández de Corres L (2000) Usefulness of currently available methods for the diagnosis of Anisakis simplex allergy. Allergy 55:627–633

    Article  PubMed  Google Scholar 

  24. McAlister L, Holland MJ (1982) Targeted deletion of a yeast enolase structural gene. Identification and isolation of yeast enolase isozymes. J Biol Chem 257:7181–7188

    PubMed  Google Scholar 

  25. Morris SR, Sakanari JA (1994) Characterization of the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. J Biol Chem 269:27650–27656

    PubMed  Google Scholar 

  26. Nielsen H, Brunak S, von Heijne G (1999) Machine learning approaches to the prediction of signal peptides and other protein sorting signals. Protein Eng 12:3–9

    Article  PubMed  Google Scholar 

  27. Pancholi V (2001) Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 58:902–920

    PubMed  Google Scholar 

  28. Pancholi V, Fischetti V (1998) Alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273:14503–14515

    Article  PubMed  Google Scholar 

  29. Pérez-Pérez J, Fernández-Caldas E, Marañon F, Sastre J, Bernal ML, Rodríguez J, Bedate CA (2000) Molecular cloning of paramyosin, a new allergen of Anisakis simplex. Int Arch Allergy Immunol 123:120–129

    Article  PubMed  Google Scholar 

  30. Sakanari JA, Mc Kerrow (1989) Anisakiasis. Clin Microbiol Rev 2:278–284

    PubMed  Google Scholar 

  31. Short JM, Fernández JM, Sorge JA, Huse WD (1988) Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res 16:7583–7600

    PubMed  Google Scholar 

  32. Simon-Nobbe B, Probst G, Kajava AV, Oberklofer H, Susani M, Crameri R, Ferreira F, Ebner C, Breitenbach M (2000) IgE-binding epitopes of enolases, a class of highly conserved fungal allergens. J Allergy Clin Immunol 106:887–895

    Article  PubMed  Google Scholar 

  33. Sugimachi K, Inochuki K, Ooiwa T, Fujino T, Ishii Y (1985) Acute gastric anisakiasis: analysis of 178 cases. J Am Med Assoc 253:1012–1013

    Article  Google Scholar 

  34. Tijssen P (1985) Processing of data and reporting of results of enzyme immunoassays. In: Burdon RH, van Knippenberg PH (eds) Laboratory techniques in biochemistry and molecular biology: practice and theory of enzyme immunoassays. Elsevier, Amsterdam, 1985:385–421

  35. Ubeira FM, Iglesias R (2000) Monoclonal antibodies in the study of Anisakis simplex. Allergy Suppl 59:18–27

    Article  Google Scholar 

  36. Valiñas B, Lorenzo S, Eiras A, Figueiras A, Sanmartin ML, Ubeira FM (2001) Prevalence of and risk factors for IgE sensitization to Anisakis simplex in a Spanish population. Allergy 56:667–671

    Article  PubMed  Google Scholar 

  37. Van der Straeten D, Rodrigues-Pousada RA, Goodman HM, Van Montagu M (1991) Plant enolase: gene structure, expression, and evolution. Plant Cell 3:719–735

    Article  PubMed  Google Scholar 

  38. Van Thiel PH, Kuipers FC, Roskam TH (1960) A nematode parasitic to herring, causing acute abdominal syndromes in man. Trop Geogr Med 12:97–113

    PubMed  Google Scholar 

  39. Waine GJ, Becker M, Kalinna B, Yang W, McManus DP (1993) Cloning and functional expression of a Schistosoma japonicum cDNA homologous to the enolase gene family. Biochem Biophys Res Commun 195:1211–1217

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This present work was supported by grants SAF2002–04057 (Ministerio de Ciencia y Tecnología, Spain), 1028/97 (Fondo de Investigación Sanitaria, Ministerio de Sanidad y Consumo, Spain) and MPY 1337/01 (Instituto de Salud Carlos III, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Gárate.

Additional information

Note: Nucleotide sequence data reported in this paper were submitted to the GenBank, EMBL and DDBJ databases under the accession number AJ496792.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, E., Romarís, F., Lorenzo, S. et al. A recombinant enolase from Anisakis simplex is differentially recognized in natural human and mouse experimental infections. Med Microbiol Immunol 195, 1–10 (2006). https://doi.org/10.1007/s00430-005-0236-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-005-0236-7

Keywords

Navigation