Skip to main content

Advertisement

Log in

Cellular receptor for pixuna virus in chicken embryonic fibroblasts

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

In this study, we describe the isolation and partial characterization of a Pixuna virus receptor, which is a component of a plasma membrane fraction of chicken embryo fibroblast (CEF). Polyclonal antiserum was prepared from rabbits immunized with the membrane fraction. Said polyclonal antiserum reacted in a similar way as monoclonal antibodies raised against the membrane fraction. Both antisera were able to prevent CEF and Vero cells from infection with Pixuna virus. Immunofluorescence studies suggested that the receptors found in the fibroblasts and in the Vero cells shared at least some epitopes. The Western blot analysis of the purified membrane fraction antigens, which reacted with the monoclonal and polyclonal antibodies, detected a double band with a molecular mass of approximately 60 kDa. Not only immunofluorescence staining but also electron and immunoelectron microscopy studies evidenced the receptor localization in the plasma membrane. In this manner, we reported the isolation and partial characterization of a new Pixuna virus receptor in the plasma membrane of chicken embryo fibroblasts in culture. The data obtained demonstrated the receptor significance for the penetration of Pixuna virus into fibroblasts and mammalian cell and the related importance of designing new antiviral drugs by blocking the mechanism of receptor penetration of the virus into the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell R, Finberg RW (1997) Isolation of a common receptor for coxsackie B viruses and adenovirus 2 and 5. Science 275:1320–1323

    Article  PubMed  CAS  Google Scholar 

  2. Byrnes AP, Griffin PE (1998) Binding of Sindbis virus to cell surface heparan sulfate. J Virol 72:7349–73563

    PubMed  CAS  Google Scholar 

  3. Cattaneo R (2004) Four viruses, two bacteria, and one receptor: membrane cofactor protein (CD46) as pathogens magnet. J Virol 78:4385–4388

    Article  PubMed  CAS  Google Scholar 

  4. Clarke D, Casals J (1958) Techniques for hemagglutination and hemagglutination-inhibitions with arthropod-borne viruses. Amer J Trop Med Hyg 7:561–573

    CAS  Google Scholar 

  5. Crowell RL, Field KA, Schief W, Long W, Colonno RJ, Mapoles JE, Emini EA (1986) Monoclonal antibody that inhibits infection of HeLa cells and rhabdomyosarcoma cells by selected enteroviruses through receptor blockade. J Virol 57:438–445

    PubMed  CAS  Google Scholar 

  6. Dörig RE, Marcil A, Chopra A, Richardson CD (1993) The human CD46 molecule is a receptor for measles virus (Edmonstron strain). Cell 75:295–3057

    Article  PubMed  Google Scholar 

  7. Dunn MJ (1994) Electrophoretic analysis method. In: Harris ELV, Angal S (eds) Protein purification methods. A practical approach. IRL press, New York, pp 18–40

    Google Scholar 

  8. Escoffier C, Gerlier D (1999) Infection of chicken embryonic fibroblasts by measles virus: adaptation as the virus entry level. J Virol 73:5220–5224

    PubMed  CAS  Google Scholar 

  9. Garda H, Paglini S (1983) Efecto de la D-glucosamina sobre la replicación del virus Pixuna en cultivo de células de embrión de pollo. Rev Lat-amer Microbiol 25:221–223

    CAS  Google Scholar 

  10. Harlow E, Lane D (1988) Antibodies. A laboratory annual. Cold Spring Harbor Laboratory press, Cold Spring Harbor Laboratory, pp 298–300

    Google Scholar 

  11. Johnston RE, Peters CJ (1996) Alphavarisus. In: Fields BN, Knipe DM, Chanock RM, Howley PM, Melnick JL, Monath TP, Roizman B, Strauss SE (eds) Virology. Leppincot-Raven, Philadelphia pp 843–898

    Google Scholar 

  12. Landau NR, Warton M, Littman DR (1998) The envelope glycoprotein of the immunodeficiency virus binds to the immunoglobulin-like domain of CD4. Nature 334:159–164

    Article  Google Scholar 

  13. Lu YE, Cassese T, Kielan M (1999) The cholesterol requirement for Sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence. J Virol 73:4272–4278

    PubMed  CAS  Google Scholar 

  14. Ludwig GV, Konding JP, Smith JF (1996) A putative receptor for Venezuelan equine encephalitis virus from mosquito cell. J Virol 70:5592–5599

    PubMed  CAS  Google Scholar 

  15. Luque AV, Pereyra E del C, Paglini S (1987) Membranous structure isolated from Swiss albino mouse brain with properties of viral receptor. Com Biol 5:317–329

    CAS  Google Scholar 

  16. Maldonado CA, Paglini S (1983) Electron microscopic studies on Pixuna virus in mouse embryo cell culture. Rev Lat-amer Microbiol 25:225–230

    Google Scholar 

  17. Maldonado CA, Paglini S (1988) The use of protein-A gold complex to study partial aspects of Pixuna virus morphohenesis. Com Biol 7:113–122

    Google Scholar 

  18. McCullagh P, Nelder J (1989) Generalized linear models. Chapman and Hall, London, United Kingdom

    Google Scholar 

  19. Mooney JJ, Dalrymple JM, Alving CR, Russell PK (1975) Interaction of Sindbis virus with liposomal model membranes. J Virol 15:225–231

    PubMed  CAS  Google Scholar 

  20. Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032

    PubMed  CAS  Google Scholar 

  21. Paglini S (1972) The brain of suckling mice infected with Junín virus. Fractionation and study. Rev Lat amer Microbiol 14:37–42

    CAS  Google Scholar 

  22. Paglini S, Zapata MT (1975) Swiss albino mouse brain gangliosides, biophysical studies, Acta Physiol Latinoam 25:188–196

    CAS  Google Scholar 

  23. Paglini S (1983) Fracciones de cerebro de ratón que inhiben inespecificamente la hemaglutinación de algunos togavirus. Rev Arg Microbiol 15:73–81

    CAS  Google Scholar 

  24. Paglini S, Pereyra E del C (1997) Caracterización parcial de un receptor para el virus Pixuna presente en eritrocitos de pollos de un día de edad. Rev Arg Microbiol 29:92–97

    CAS  Google Scholar 

  25. Powers AM, Brault AC, Shirako Y, Strauss EG, Kang W, Strauss JH, Weaver SC (2001) Evolutionary relationships and systematics of the alphaviruses. J Virol 75:10118–10131

    Article  PubMed  CAS  Google Scholar 

  26. Salanueva IJ, Carrascosa JL, Risco C (1999) Structural madurattion of the transmissible gastroenteritis coronavirus. J Virol 73:7952–7964

    PubMed  CAS  Google Scholar 

  27. Sampieri L, Sartori T, Paglini S (1984) Propagación del virus Pixuna en cultivo de embrión de ratón. Rev Asoc Arg Microbiol 16:45–48

    CAS  Google Scholar 

  28. Sattentau QJ, Weis RA (1988) The CD4 antigen: physiological ligand and HIV receptor. Cell 52:631–633

    Article  PubMed  CAS  Google Scholar 

  29. Segerman A, Atkinson JP, Martilla M, Dennerquist V, Wadel G, Arnberg N (2003) Adenovirus type 11 uses CD46 as a cellular receptor. J Virol 77:9183–9191

    Article  PubMed  CAS  Google Scholar 

  30. Schlesinger S, Schlesinger MJ (1996) Togaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Chanock RM, Howley PM, Melnick JL, Monath TP, Roizman B, Strauss SE (eds) Virology. Lippincot-Raven, Philadelphia, pp 825–841

    Google Scholar 

  31. Shope RE, Caussey OR, De Andrage AHP, Theiler MA (1964) VEE complex of group A arthropod-born viruses including Mucambo and Pixuna from Amazon. J Trop Med Hyg 13:723–727

    CAS  Google Scholar 

  32. Smit JM, Bittman R, Wilschut J (1999) Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolopid-containing liposomes. J Virol 73:8476–8484

    PubMed  CAS  Google Scholar 

  33. Strauss JH, Rümenapf T, Weir RC, Kuhn RJ, Wang KS, Strauss EG (1994) Cellular receptors for alphaviruses. In: Wimmer E (ed) Cellular receptors for animal viruses. Cold Spring Harbor Laboratory, New York, pp 141–163

    Google Scholar 

  34. Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562

    PubMed  CAS  Google Scholar 

  35. Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) SLAM (CDw 150) is a cellular receptor for measles virus. Nature 406:893–897

    Article  PubMed  CAS  Google Scholar 

  36. Wang KS, Schmaljohn AL, Kuhn RJ, Strauss JH (1991) Antiidiotypic antibodies as probes for the Sindbis virus receptor. Virology 181:694–702

    Article  PubMed  CAS  Google Scholar 

  37. Wang KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH (1992) High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 66:4992–5001

    PubMed  CAS  Google Scholar 

  38. Wood JN (1984) Immunization and fusion protocols for hybridoma production. In: Walker JM, (ed) Methods in molecular biology, vol 1. Proteins. Humana Press, Clifton, pp 261–270

  39. Wu E, Tauger SA, Pache L, Mulle T-M, Von Seggern DJ, Sinzdak G, Nemerow GR (2004) Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoconjunctivites. J Virol 78:3897–3905

    Article  PubMed  CAS  Google Scholar 

  40. Zapata MT, Paglini S (1973) Mouse brain gangliosides, their property of inhibiting EEE virus hemagglutination. Arch ges Virusforch 43:184–190

    Article  CAS  Google Scholar 

  41. Zapata MT, Paglini S (1974) Gangliosidos de cerebro, Una relación posible entre estructura y la propiedad de producir inhibición de la hemaglutinación del virus de la encefalitis equina del este. Rev Asoc Arg Microbiol 6:27–29

    CAS  Google Scholar 

  42. Zapata MT, Paglini S (1978) Non-specific inhibitory fraction for hemagglutination of some togaviruses obtained from Swiss albino mouse brain. Rev Asoc Arg Microbiol 10:32–39

    CAS  Google Scholar 

Download references

Acknowledgements

GP is a member of the Research Career from the Consejo Nacional de Investigaciones Científicas y Técnicas de la R. Argentina and contributed principally to this work. We gratefully acknowledge to Sondra Schlesinger and Marta Ruben-Campioni for fruitful and excellent critiques of the manuscript. We appreciate the assessment and language editing work carried out by Valeria Mosqueda and Lorena Riquelme. We thank Avicola Bartolucci that provided free the chicken embryo and the 1-day-old chicken. We also thank Cristina Maldonado for assistance with electron microscopy of the receptor as well as to Maria del Pilar Díaz for the statistical data and to Brenda Königheim, Javier Aguilar and Luciana Martinez from our Institute for the supply of Vero cells in the final stage of this study. Part of this work was supported from SECyT, UNC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Paglini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paglini, G., Pereyra, E.d.C. & Paglini, S. Cellular receptor for pixuna virus in chicken embryonic fibroblasts. Med Microbiol Immunol 195, 85–92 (2006). https://doi.org/10.1007/s00430-005-0004-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-005-0004-8

Keywords

Navigation