Skip to main content

Advertisement

Log in

Neuroanatomical asymmetry in the canine brain

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The brains of humans and non-human primates exhibit left/right asymmetries in grey matter morphology, white matter connections, and functional responses. These asymmetries have been implicated in specialized behavioral adaptations such as language, tool use, and handedness. Left/right asymmetries are also observed in behavioral tendencies across the animal kingdom, suggesting a deep evolutionary origin for the neural mechanisms underlying lateralized behavior. However, it is still unclear to what extent brain asymmetries supporting lateralized behaviors are present in other large-brained animals outside the primate order. Canids and other carnivorans evolved large, complex brains independently and convergently with primates, and exhibit lateralized behaviors. Therefore, domestic dogs offer an opportunity to address this question. We examined T2-weighted MRI images of 62 dogs from 33 breeds, opportunistically collected from a veterinary MRI scanner from dogs who were referred for neurological examination but were not found to show any neuropathology. Volumetrically asymmetric regions of gray matter included portions of the temporal and frontal cortex, in addition to portions of the cerebellum, brainstem, and other subcortical regions. These results are consistent with the perspective that asymmetry may be a common feature underlying the evolution of complex brains and behavior across clades, and provide neuro-organizational information that is likely relevant to the growing field of canine behavioral neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

Enquiries about data availability should be directed to the authors.

References

  • Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14:322–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andics A, Miklósi Á (2018) Neural processes of vocal social perception: dog-human comparative fMRI studies. Neurosci Biobehav Rev 85:54–64

    PubMed  Google Scholar 

  • Andics A, Gácsi M, Faragó T, Kis A, Miklósi Á (2014) Voice-sensitive regions in the dog and human brain are revealed by comparative fMRI. Curr Biol 24:574–578

    CAS  PubMed  Google Scholar 

  • Andics A, Gábor A, Gácsi M, Faragó T, Szabó D, Miklósi Á (2016) Neural mechanisms for lexical processing in dogs. Science 353:1030–1032

    CAS  PubMed  Google Scholar 

  • Avants BB, Tustison NJ, Wu J, Cook PA, Gee JC (2011) An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9:381–400

    PubMed  PubMed Central  Google Scholar 

  • Avants BB, Tustison NJ, Song G, Gee JC (2009) ANTS: Advanced open-source normalization tools for neuroanatomy. Penn Image Computing and Science Laboratory 1–35

  • Barbas H, Saha S, Rempel-Clower N, Ghashghaei T (2003) Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci 4:4–25

    Google Scholar 

  • Becker Y, Meguerditchian A (2022) Structural brain asymmetries for language: a comparative approach across primates. Symmetry 14:876

    Google Scholar 

  • Becker Y, Claidière N, Margiotoudi K, Marie D, Roth M, Nazarian B, Anton JL, Coulon O, Meguerditchian A (2022) Broca’s cerebral asymmetry reflects gestural communication’s lateralisation in monkeys (Papio anubis). Elife 11:e70521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol) 57:289–300

    Google Scholar 

  • Bogart SL, Mangin JF, Schapiro SJ, Reamer L, Bennett AJ, Pierre PJ, Hopkins WD (2012) Cortical sulci asymmetries in chimpanzees and macaques: a new look at an old idea. Neuroimage 61:533–541

    PubMed  Google Scholar 

  • Boros M, Gábor A, Szabó D, Bozsik A, Gácsi M, Szalay F, Faragó T, Andics A (2020) Repetition enhancement to voice identities in the dog brain. Sci Rep 10:3989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown C, Magat M (2011) Cerebral lateralization determines hand preferences in Australian parrots. Biol Let 7:496–498

    Google Scholar 

  • Bryant KL, Preuss TM (2018) A comparative perspective on the human temporal lobe. In: Bruner E, Ogihara N, Tanabe H (eds) Digital endocasts. Springer, Tokyo, pp 239–258

    Google Scholar 

  • Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80:807–815

    CAS  PubMed  Google Scholar 

  • Cook PF, Spivak M, Berns G (2016) Neurobehavioral evidence for individual differences in canine cognitive control: an awake fMRI study. Anim Cogn 19:867–878

    PubMed  Google Scholar 

  • Coppinger R, Coppinger L (2002) Dogs: a new understanding of canine origin, behavior and evolution. University of Chicago Press, Chicago

    Google Scholar 

  • Cuaya LV, Hernández-Pérez R, Concha L (2016) Our faces in the dog’s brain: functional imaging reveals temporal cortex activation during perception of human faces. PLoS ONE 11:e0149431

    PubMed  PubMed Central  Google Scholar 

  • Cuaya LV, Hernández-Pérez R, Boros M, Deme A, Andics A (2022) Speech naturalness detection and language representation in the dog brain. Neuroimage 248:118811

    PubMed  Google Scholar 

  • Datta R, Lee J, Duda J, Avants BB, Vite CH, Tseng B, Gee JC, Aguirre GD, Aguirre GK (2012) A digital atlas of the dog brain. PLoS ONE 7:e52140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elvsåshagen T, Bahrami S, van der Meer D, Agartz I, Alnæs D, Barch DM, Baur-Streubel R, Bertolino A, Beyer MK, Blasi G, Borgwardt S (2020) The genetic architecture of human brainstem structures and their involvement in common brain disorders. Nat Commun 11:4016

    PubMed  PubMed Central  Google Scholar 

  • Evans AC (2013) Networks of anatomical covariance. Neuroimage 80:489504

    Google Scholar 

  • Fears SC, Scheibel K, Abaryan Z, Lee C, Service SK, Jorgensen MJ, Fairbanks LA, Cantor RM, Freimer NB, Woods RP (2011) Anatomic brain asymmetry in vervet monkeys. PLoS ONE 6:e28243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gábor A, Gácsi M, Szabó D, Miklósi Á, Kubinyi E, Andics A (2020) Multilevel fMRI adaptation for spoken word processing in the awake dog brain. Sci Rep 10:1–11

    Google Scholar 

  • Gobbo E, Šemrov MZ (2021) Neuroendocrine and cardiovascular activation during aggressive reactivity in dogs. Front Vet Sci 8:902

    Google Scholar 

  • Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC (2016) The heritability of chimpanzee and human brain asymmetry. Proc R Soc b Biol Sci 283:20161319

    Google Scholar 

  • Güntürkün O, Ströckens F, Ocklenburg S (2020) Brain lateralization: a comparative perspective. Physiol Rev 100:1019–1063

    PubMed  Google Scholar 

  • Gupta CN, Turner JA, Calhoun VD (2019) Source-based morphometry: a decade of covarying structural brain patterns. Brain Struct Funct 224:3031–3044

    PubMed  Google Scholar 

  • Hecht EE, Smaers JB, Dunn WD, Kent M, Preuss TM, Gutman DA (2019) Significant neuroanatomical variation among domestic dog breeds. J Neurosci 39:7748–7758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht EE, Zapata I, Alvarez CE, Gutman DA, Preuss TM, Kent M, Serpell JA (2021) Neurodevelopmental scaling is a major driver of brain–behavior differences in temperament across dog breeds. Brain Struct Funct 226:2725–2739

    CAS  PubMed  Google Scholar 

  • Hopkins WD, Avants BB (2013) Regional and hemispheric variation in cortical thickness in chimpanzees (Pan troglodytes). J Neurosci 33:5241–5248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins WD, Cantalupo C (2008) Theoretical speculations on the evolutionary origins of hemispheric specialization. Curr Dir Psychol Sci 17:233–237

    Google Scholar 

  • Hopkins WD, Taglialatela JP, Meguerditchian A, Nir T, Schenker NM, Sherwood CC (2008) Gray matter asymmetries in chimpanzees as revealed by voxel-based morphometry. Neuroimage 42:491–497

    PubMed  Google Scholar 

  • Hopkins WD, Misiura M, Pope SM, Latash EM (2015) Behavioral and brain asymmetries in primates: a preliminary evaluation of two evolutionary hypotheses. Ann N Y Acad Sci 1359:65–83

    PubMed  PubMed Central  Google Scholar 

  • Jia H, Pustovyy OM, Waggoner P, Beyers RJ, Schumacher J, Wildey C, Barrett J, Morrison E, Salibi N, Denney TS, Vodyanoy VJ (2014) Functional MRI of the olfactory system in conscious dogs. PLoS ONE 9:e86362

    PubMed  PubMed Central  Google Scholar 

  • Kaas JH (2011) Reconstructing the areal organization of the neocortex of the first mammals. Brain Behav Evol 78:7–21

    PubMed  Google Scholar 

  • Kang X, Herron TJ, Ettlinger M, Woods DL (2015) Hemispheric asymmetries in cortical and subcortical anatomy. Laterality: asymmetries of body. Brain Cogn 20:658–684

    Google Scholar 

  • Kellogg GM (1898) The physiology of right-and-left-handedness. J Am Med Assoc 30:356–358

    Google Scholar 

  • Kong XZ, Postema MC, Guadalupe T, de Kovel C, Boedhoe PS, Hoogman M, Mathias SR, Van Rooij D, Schijven D, Glahn DC, Medland SE (2018) Mapping brain asymmetry in health and disease through the ENIGMA consortium. Hum Brain Mapp 43:167–181

    Google Scholar 

  • Kosmal A, Dabrowska J (1980) Subcortical connections of the prefrontal cortex in dogs: afferents to the orbital gyrus. Acta Neurobiol Exp 40:593–608

    CAS  Google Scholar 

  • Koyun N, Aydinlioğlu A, Aslan K (2011) A morphometric study on dog cerebellum. Neurol Res 33:220–224

    PubMed  Google Scholar 

  • Kreiner J (1961) The myeloarchitectonics of the frontal cortex in dog. J Comp Neurol 116:401–414

    Google Scholar 

  • Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34:1812–1819

    CAS  PubMed  Google Scholar 

  • Lopez-Persem A, Roumazeilles L, Folloni D, Marche K, Fouragnan EF, Khalighinejad N, Rushworth MF, Sallet J (2020) Differential functional connectivity underlying asymmetric reward-related activity in human and nonhuman primates. Proc Natl Acad Sci 117:28452–28462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maingault S, Tzourio-Mazoyer N, Mazoyer B, Crivello F (2016) Regional correlations between cortical thickness and surface area asymmetries: a surface-based morphometry study of 250 adults. Neuropsychologia 93:350–364

    PubMed  Google Scholar 

  • Marie D, Roth M, Lacoste R, Nazarian B, Bertello A, Anton JL, Hopkins WD, Margiotoudi K, Love SA, Meguerditchian A (2017) Left brain asymmetry of the planum temporale in a nonhominid primate: redefining the origin of brain specialization for language. Cereb Cortex 28:1808–1815

    Google Scholar 

  • Markow-Rajkowska G, Kosmal A (1987) Organization of cortical afferents to the frontal association cortex in dogs. Acta Neurobiol Exp (wars) 47:137–161

    CAS  PubMed  Google Scholar 

  • Nagasawa M, Kawai E, Mogi K, Kikusui T (2013) Dogs show left facial lateralization upon reunion with their owners. Behav Proc 98:112–116

    Google Scholar 

  • Norton HL, Quillen EE, Bigham AW, Pearson LN, Dunsworth H (2019) Human races are not like dog breeds: refuting a racist analogy. Evol Educ Outreach 12:1–20

    Google Scholar 

  • Ocklenburg S, Isparta S, Peterburs J, Papadatou-Pastou M (2019) Paw preferences in cats and dogs: meta-analysis. Laterality: asymmetries of body. Brain Cogn 24:647–677

    Google Scholar 

  • Ocklenburg S, Peterburs J, Mundorf A (2022) Hemispheric asymmetries in the amygdala: a comparative primer. Prog Neurobiol 214:102283

    PubMed  Google Scholar 

  • Phillips KA, Sherwood CC (2005) Primary motor cortex asymmetry is correlated with handedness in capuchin monkeys (Cebus apella). Behav Neurosci 119:1701

    PubMed  Google Scholar 

  • Phillips KA, Stimpson CD, Smaers JB, Raghanti MA, Jacobs B, Popratiloff A, Hof PR, Sherwood CC (2015) The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry. Proc R Soc b Biol Sci 282:20151535

    Google Scholar 

  • Preuss TM, Wise SP (2022) Evolution of prefrontal cortex. Neuropsychopharmacology 47:3–19

    PubMed  Google Scholar 

  • Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62:816–847

    PubMed  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Radinsky L (1969) Outlines of canid and felid brain evolution. Ann N Y Acad Sci 167:277–288

    Google Scholar 

  • Rağbetli MÇ, Aydinlioğlu A, Koyun N, Yayici R, Arslan K (2010) Total neuron numbers in CA1-4 sectors of the dog hippocampus. Indian J Med Res 131:780–785

    PubMed  Google Scholar 

  • Rasdolsky T (1927) The asymmetry of the hemispheres of the brain in man and animals. J Nerv Ment Dis 62:119–132

    Google Scholar 

  • Rogers LJ (2000) Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang 73:236–253

    CAS  PubMed  Google Scholar 

  • Schmahmann JD (2016) The cerebrocerebellar system. In: Gruol DL, Koibuchi N, Manto M, Molinari M, Schmahmann J, Shen Y (eds) Essentials of cerebellum and cerebellar disorders: a primer for graduate students. Springer, Cham, pp 101–115

    Google Scholar 

  • Schmahmann JD (2019) The cerebellum and cognition. Neurosci Lett 688:62–75

    CAS  PubMed  Google Scholar 

  • Schneider LA, Delfabbro PH, Burns NR (2012) The influence of cerebral lateralisation on the behaviour of the racing greyhound. Appl Anim Behav Sci 141:57–64

    Google Scholar 

  • Sherrington CS (1922) Some aspects of animal mechanism. Science 56:345–355

    CAS  PubMed  Google Scholar 

  • Siniscalchi M, Sasso R, Pepe AM, Vallortigara G, Quaranta A (2010) Dogs turn left to emotional stimuli. Behav Brain Res 208:516–521

    PubMed  Google Scholar 

  • Siniscalchi M, Pergola G, Quaranta A (2013) Detour behaviour in attack-trained dogs: left-turners perform better than right-turners. Laterality: asymmetries of body. Brain Cogn 18:282–293

    Google Scholar 

  • Siniscalchi M, d’Ingeo S, Quaranta A (2016) The dog nose “KNOWS” fear: asymmetric nostril use during sniffing at canine and human emotional stimuli. Behav Brain Res 304:34–41

    PubMed  Google Scholar 

  • Siniscalchi M, d’Ingeo S, Quaranta A (2017) Lateralized functions in the dog brain. Symmetry 9:71

    Google Scholar 

  • Siniscalchi M, Bertino D, d’Ingeo S, Quaranta A (2019) Relationship between motor laterality and aggressive behavior in sheepdogs. Symmetry 11:233

    Google Scholar 

  • Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localization in cluster inference. Neuroimage 44:83–98

    PubMed  Google Scholar 

  • Sutter NB, Mosher DS, Gray MM, Ostrander EA (2008) Morphometrics within dog breeds are highly reproducible and dispute Rensch’s rule. Mamm Genome 19:713–723

    PubMed  PubMed Central  Google Scholar 

  • Szabó D, Czeibert K, Kettinger Á, Gácsi M, Andics A, Miklósi Á, Kubinyi E (2019) Resting-state fMRI data of awake dogs (Canis familiaris) via group-level independent component analysis reveal multiple, spatially distributed resting-state networks. Sci Rep 9:1–25

    Google Scholar 

  • Takao H, Abe O, Yamasue H, Aoki S, Sasaki H, Kasai K, Yoshioka N, Ohtomo K (2011) Gray and white matter asymmetries in healthy individuals aged 21–29 years: a voxel-based morphometry and diffusion tensor imaging study. Hum Brain Mapp 32:1762–1773

    PubMed  Google Scholar 

  • Tan Ü, Çalşikan S (1987) Allometry and asymmetry in the dog brain: the right hemisphere is heavier regardless of paw preference. Int J Neurosci 35:189–194

    CAS  PubMed  Google Scholar 

  • Thompkins AM, Ramaiahgari B, Zhao S, Gotoor SSR, Waggoner P, Denney TS, Deshpande G, Katz JS (2018) Separate brain areas for processing human and dog faces as revealed by awake fMRI in dogs (Canis familiaris). Learn Behav 46:561–573

    PubMed  Google Scholar 

  • Tomkins LM, Thomson PC, McGreevy PD (2012) Associations between motor, sensory and structural lateralisation and guide dog success. Vet J 192:359–367

    PubMed  Google Scholar 

  • Vickery S, Hopkins WD, Sherwood CC, Schapiro SJ, Latzman RD, Caspers S, Gaser C, Eickhoff SB, Dahnke R, Hoffstaedter F (2020) Chimpanzee brain morphometry utilizing standardized MRI preprocessing and macroanatomical annotations. Elife 9:e60136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference for the general linear model. Neuroimage 92:381–397

    PubMed  Google Scholar 

  • Xia J, Wang F, Wu Z, Wang L, Zhang C, Shen D, Li G (2019) Mapping hemispheric asymmetries of the macaque cerebral cortex during early brain development. Hum Brain Mapp 41:95–106

    PubMed  PubMed Central  Google Scholar 

  • Xia X, Gao F, Yuan Z (2021) Species and individual differences and connectional asymmetry of Broca’s area in humans and macaques. Neuroimage 244:118583

    PubMed  Google Scholar 

  • Xiang L, Crow TJ, Hopkins WD, Roberts N (2020) Comparison of surface area and cortical thickness asymmetry in the human and chimpanzee brain. Cereb Cortex bhaa202

  • Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD (2009) Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp 30:711–724

    PubMed  Google Scholar 

  • Yan C, Gong G, Wang J, Wang D, Liu D, Zhu C, Chen ZJ, Evans A, Zang Y, He Y (2011) Sex-and brain size–related small-world structural cortical networks in young adults: a DTI tractography study. Cereb Cortex 21:449–458

    PubMed  Google Scholar 

  • Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57

    CAS  PubMed  Google Scholar 

  • Zhou D, Lebel C, Evans A, Beaulieu C (2013) Cortical thickness asymmetry from childhood to older adulthood. Neuroimage 83:66–74

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation–Division of Integrative Organismal Systems (Grant NSF-IOS 1457291 and NSF-IOS 2238071). We would like to thank the University of Georgia College of Veterinary Medicine’s veterinary staff for collecting the MRI data.

Funding

This work was funded by National Science Foundation, United States (Grant nos. 2238071, 2238071).

Author information

Authors and Affiliations

Authors

Contributions

SB and EH designed the study. MK collected the data. EH and SB analyzed the data. SB wrote the first draft of the manuscript. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Sophie A. Barton.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance Statement: The degree to which brain asymmetries are present in non-primate mammals is unknown. By examining T2-weighted MRI images of 62 dogs, we found that dogs show widespread asymmetries in gray matter morphology in cortical and non-cortical regions, much like primates. These asymmetries did not scale with brain size. They were present in previously discovered brain networks related to historical dog breed behavioral specializations such as herding, scent hunting, sight hunting, and vermin control. Our results show that brain asymmetries are not unique to primates, and suggest that this may be related to the emergence of lateralized behavioral, perceptual, and cognitive function in dogs, and potentially in large-brained mammals more generally.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4018 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barton, S.A., Kent, M. & Hecht, E.E. Neuroanatomical asymmetry in the canine brain. Brain Struct Funct 228, 1657–1669 (2023). https://doi.org/10.1007/s00429-023-02677-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-023-02677-0

Keywords

Navigation