Skip to main content
Log in

Using modular connectome-based predictive modeling to reveal brain-behavior relationships of individual differences in working memory

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Working memory plays a crucial role in our daily lives, and brain imaging has been used to predict working memory performance. Here, we present an improved connectome-based predictive modeling approach for building a predictive model of individual working memory performance from whole-brain functional connectivity. The model was built using n-back task-based fMRI and resting-state fMRI data from the Human Connectome Project. Compared to prior models, our model was more interpretable, demonstrated a closer connection to the known anatomical and functional network. The model also demonstrates strong generalization on nine other cognitive behaviors from the HCP database and can well predict the working memory performance of healthy individuals in external datasets. By comparing the differences in prediction effects of different brain networks and anatomical feature analysis on n-back tasks, we found the essential role of some networks in differentiating between high and low working memory loads conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Human Connectome Project S1200 release at [http://www.humanconnectome.org/] and OpenfMRI database at [https://www.openfmri.org/] (accession number is ds000115).

References

  • Avery EW, Yoo K, Rosenberg MD, Greene AS, Gao S, Na DL, Scheinost D, Constable TR, Chun MM (2020) Distributed patterns of functional connectivity predict working memory performance in novel healthy and memory-impaired individuals. J Cogn Neurosci 32(2):241–255

    Article  PubMed  Google Scholar 

  • Axmacher N, Mormann F, Fernández G, Cohen MX, Elger CE, Fell J (2007) Sustained neural activity patterns during working memory in the human medial temporal lobe. J Neurosci 27(29):7807–7816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baddeley A (2000) The episodic buffer: a new component of working memory? Trends Cogn Sci 4(11):417–423

    Article  CAS  PubMed  Google Scholar 

  • Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4(10):829–839

    Article  CAS  PubMed  Google Scholar 

  • Bauer RH, Fuster JM (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J Comp Physiol Psychol 90(3):293

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Ryali S, Pasumarthy R, Talasila V, Menon V (2021) Dynamic causal brain circuits during working memory and their functional controllability. Nat Commun 12(1):1–16

    Article  Google Scholar 

  • Cowan N (2014) Working memory underpins cognitive development, learning, and education. Educ Psychol Rev 26(2):197–223

    Article  PubMed  Google Scholar 

  • Delawalla Z, Barch DM, Fisher Eastep JL, Thomason ES, Hanewinkel MJ, Thompson PA, Csernansky JG (2006) Factors mediating cognitive deficits and psychopathology among siblings of individuals with schizophrenia. Schizophr Bull 32(3):525–537

    Article  PubMed  PubMed Central  Google Scholar 

  • Dryburgh E, McKenna S, Rekik I (2020) Predicting full-scale and verbal intelligence scores from functional connectomic data in individuals with autism spectrum disorder. Brain Imaging Behav 14(5):1769–1778

    Article  PubMed  Google Scholar 

  • Eryilmaz H, Dowling KF, Hughes DE, Rodriguez-Thompson A, Tanner A, Huntington C, Coon WG, Roffman JL (2020) Working memory load-dependent changes in cortical network connectivity estimated by machine learning. Neuroimage 217:116895

    Article  PubMed  Google Scholar 

  • Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, Papademetris X, Constable RT (2015) Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat Neurosci 18(11):1664–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61(2):331–349

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173(3997):652–654

    Article  CAS  PubMed  Google Scholar 

  • Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR (2013) The minimal preprocessing pipelines for the human connectome project. Neuroimage 80:105–124

    Article  PubMed  Google Scholar 

  • Haatveit BC, Sundet K, Hugdahl K, Ueland T, Melle I, Andreassen OA (2010) The validity of d prime as a working memory index: results from the “Bergen n-back task.” J Clin Exp Neuropsychol 32(8):871–880

    Article  PubMed  Google Scholar 

  • Jiang R, Calhoun VD, Cui Y, Qi S, Zhuo C, Li J, Jung R, Yang J, Du Y, Jiang T (2020a) Multimodal data revealed different neurobiological correlates of intelligence between males and females. Brain Imaging Behav 14(5):1979–1993

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang R, Zuo N, Ford JM, Qi S, Zhi D, Zhuo C, Xu Y, Fu Z, Bustillo J, Turner JA (2020b) Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships. Neuroimage 207:116370

    Article  PubMed  Google Scholar 

  • Kelley TA, Lavie N (2011) Working memory load modulates distractor competition in primary visual cortex. Cereb Cortex 21(3):659–665

    Article  PubMed  Google Scholar 

  • Kirchner WK (1958) Age differences in short-term retention of rapidly changing information. J Exp Psychol 55(4):352

    Article  CAS  PubMed  Google Scholar 

  • Kirschen MP, Chen SA, Schraedley-Desmond P, Desmond JE (2005) Load-and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fmri study. Neuroimage 24(2):462–472

    Article  PubMed  Google Scholar 

  • Klatzky RL (1975) Human memory: structures and processes. W. H. Freeman, P87

    Google Scholar 

  • Koenigs M, Barbey AK, Postle BR, Grafman J (2009) Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci 29(47):14980–14986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Chen Y, Le TM, Wang W, Tang X, Li C-SR (2021) Neural correlates of individual variation in two-back working memory and the relationship with fluid intelligence. Sci Rep 11(1):1–13

    Google Scholar 

  • Lin Q, Yoo K, Shen X, Constable RT, Chun MM (2020) A connectome-based prediction model of long-term memory. bioRxiv

  • Logothetis NK (2008) What we can do and what we cannot do with fmri. Nature 453(7197):869–878

    Article  CAS  PubMed  Google Scholar 

  • Marvel CL, Morgan OP, Kronemer SI (2019) How the motor system integrates with working memory. Neurosci Biobehav Rev 102:184–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller G-G, Pribram E (1960) vol 16. Henry Holt and company, New York

  • Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25(1):46–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Redick TS, Lindsey DR (2013) Complex span and n-back measures of working memory: A meta-analysis. Psychon Bull Rev 20(6):1102–1113

    Article  PubMed  Google Scholar 

  • Repovš G, Barch DM (2012) Working memory related brain network connectivity in individuals with schizophrenia and their siblings. Front Hum Neurosci 6:137

    Article  PubMed  PubMed Central  Google Scholar 

  • Repovs G, Csernansky JG, Barch DM (2011) Brain network connectivity in individuals with schizophrenia and their siblings. Biol Psychiat 69(10):967–973

    Article  PubMed  Google Scholar 

  • Rinck P (2014) Magnetic resonance: a critical peer-reviewed introduction. Magnetic resonance in medicine. The basic textbook of the European magnetic resonance forum. BoD Germany, p 21

    Google Scholar 

  • Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, Fox PT, Eickhoff SB (2012) Modelling neural correlates of working memory: a coordinate-based meta-analysis. Neuroimage 60(1):830–846

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Tokoglu F, Papademetris X, Constable RT (2013) Groupwise whole-brain parcellation from resting-state fmri data for network node identification. Neuroimage 82:403–415

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Finn ES, Scheinost D, Rosenberg MD, Chun MM, Papademetris X, Constable RT (2017) Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protoc 12(3):506–518

    Article  CAS  Google Scholar 

  • Sui J, Jiang R, Bustillo J, Calhoun V (2020) Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises. Biol Psychiat 88(11):818–828

    Article  PubMed  Google Scholar 

  • Talati A, Hirsch J (2005) Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on what, when, and where related information: an fmri study. J Ccogn Neurosci 17(7):981–993

    Article  Google Scholar 

  • Tomasi D, Volkow ND (2020) Network connectivity predicts language processing in healthy adults. Hum Brain Mapp 41(13):3696–3708

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R, Chang A, Chen L, Corbetta M, Curtiss SW (2012) The human connectome project: a data acquisition perspective. Neuroimage 62(4):2222–2231

    Article  PubMed  Google Scholar 

  • Wang H, He W, Wu J, Zhang J, Jin Z, Li L (2019) A coordinate-based meta-analysis of the n-back working memory paradigm using activation likelihood estimation. Brain Cogn 132:1–12

    Article  PubMed  Google Scholar 

  • Wolf RC, Vasic N, Walter H (2006) Differential activation of ventrolateral prefrontal cortex during working memory retrieval. Neuropsychologia 44(12):2558–2563

    Article  PubMed  Google Scholar 

  • Wu Q, Ripp I, Emch M, Koch K (2021) Cortical and subcortical responsiveness to intensive adaptive working memory training: an mri surface-based analysis. Hum Brain Mapp 42(9):2907–2920

    Article  PubMed  PubMed Central  Google Scholar 

  • WU-Minn H (2017) 1200 subjects data release reference manual. URL https://www.humanconnectome.org. Accessed Nov 2021

  • Zylberberg J, Strowbridge BW (2017) Mechanisms of persistent activity in cortical circuits: possible neural substrates for working memory. Annu Rev Neurosci 40:603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by grants from NSFC (62176045), by Sichuan Science and Technology Program (2023YFS0191),111 project (B12027), and the Fundamental Research Funds for the Central Universities (ZYGX2020FRJH014).

Author information

Authors and Affiliations

Authors

Contributions

HY wrote the main manuscript text. All authors reviewed the manuscript and made revisions to the manuscript.

Corresponding author

Correspondence to Ling Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhang, J., Jin, Z. et al. Using modular connectome-based predictive modeling to reveal brain-behavior relationships of individual differences in working memory. Brain Struct Funct 228, 1479–1492 (2023). https://doi.org/10.1007/s00429-023-02666-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-023-02666-3

Keywords

Navigation