Skip to main content
Log in

Evolving characterization of the human hyperdirect pathway

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The hyperdirect pathway (HDP) represents the main glutamatergic input to the subthalamic nucleus (STN), through which the motor and prefrontal cerebral cortex can modulate basal ganglia activity. Further, direct activation of the motor HDP is thought to be an important component of therapeutic deep brain stimulation (DBS), mediating the disruption of pathological oscillations. Alternatively, unintended recruitment of the prefrontal HDP may partly explain some cognitive side effects of DBS therapy. Previous work describing the HDP has focused on non-human primate (NHP) histological pathway tracings, diffusion-weighted MRI analysis of human white matter, and electrophysiology studies involving paired cortical recordings with DBS. However, none of these approaches alone yields a complete understanding of the complexities of the HDP. As such, we propose that generative modeling methods hold promise to bridge anatomy and physiology results, from both NHPs and humans, into a more detailed representation of the human HDP. Nonetheless, numerous features of the HDP remain to be experimentally described before model-based methods can simulate corticosubthalamic activity with a high degree of scientific detail. Therefore, the goals of this review are to examine the experimental evidence for HDP projections from across the primate neocortex and discuss new data which are required to improve the utility of anatomical and biophysical models of the human corticosubthalamic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Adams SR, Tsien RY (1993) Controlling cell chemistry with caged compounds. Annu Rev Physiol 55(1):755–784

    Article  CAS  PubMed  Google Scholar 

  • Akram H, Sotiropoulos SN, Jbabdi S, Georgiev D, Mahlknecht P, Hyam J, Zrinzo L (2017) Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. Neuroimage 158:332–345

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  CAS  PubMed  Google Scholar 

  • Alkemade A, de Hollander G, Miletic S, Keuken MC, Balesar R, de Boer O, Forstmann BU (2019) The functional microscopic neuroanatomy of the human subthalamic nucleus. Brain Struct Funct 224(9):3213–3227

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson RW, Farokhniaee A, Gunalan K, Howell B, McIntyre CC (2018) Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation. Brain Stimul 11(5):1140–1150

    Article  PubMed  PubMed Central  Google Scholar 

  • Aravamuthan BR, Muthusamy KA, Stein JF, Aziz TZ, Johansen-Berg H (2007) Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage 37(3):694–705

    Article  CAS  PubMed  Google Scholar 

  • Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J Neurosci 26(9):2424–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aron AR, Herz DM, Brown P, Forstmann BU, Zaghloul K (2016) Frontosubthalamic circuits for control of action and cognition. J Neurosci 36(45):11489–11495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE, Crow M, Hodge RD, Krienen FM, Sorensen SA, Eggermont J, Yao Z, Aevermann BD, Aldridge AI, Bartlett A, Bertagnolli D, Casper T, Castanon RG, Crichton K, Daigle TL, Dalley R, Dee N, Dembrow N, Diep D, Ding SL, Dong W, Fang R, Fischer S, Goldman M, Goldy J, Graybuck LT, Herb BR, Hou X, Kancherla J, Kroll M, Lathia K, van Lew B, Li YE, Liu CS, Liu H, Lucero JD, Mahurkar A, McMillen D, Miller JA, Moussa M, Nery JR, Nicovich PR, Niu SY, Orvis J, Osteen JK, Owen S, Palmer CR, Pham T, Plongthongkum N, Poirion O, Reed NM, Rimorin C, Rivkin A, Romanow WJ, Sedeño-Cortés AE, Siletti K, Somasundaram S, Sulc J, Tieu M, Torkelson A, Tung H, Wang X, Xie F, Yanny AM, Zhang R, Ament SA, Behrens MM, Bravo HC, Chun J, Dobin A, Gillis J, Hertzano R, Hof PR, Höllt T, Horwitz GD, Keene CD, Kharchenko PV, Ko AL, Lelieveldt BP, Luo C, Mukamel EA, Pinto-Duarte A, Preissl S, Regev A, Ren B, Scheuermann RH, Smith K, Spain WJ, White OR, Koch C, Hawrylycz M, Tasic B, Macosko EZ, McCarroll SA, Ting JT, Zeng H, Zhang K, Feng G, Ecker JR, Linnarsson S, Lein ES (2021) Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598(7879):111–119. https://doi.org/10.1038/s41586-021-03465-8

    Article  Google Scholar 

  • Bevan MD, Clarke NP, Bolam JP (1997) Synaptic integration of functionally diverse pallidal information in the entopeduncular nucleus and subthalamic nucleus in the rat. J Neurosci 17(1):308–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingham CS, McIntyre CC (2022) Subthalamic deep brain stimulation of an anatomically detailed model of the human hyperdirect pathway. J Neurophysiol 127(5):1209–1220. https://doi.org/10.1152/jn.00004.2022

    Article  PubMed  Google Scholar 

  • Bingham CS, Mergenthal A, Bouteiller JMC, Song D, Lazzi G, Berger TW (2020) ROOTS: an algorithm to generate biologically realistic cortical axons and an application to electroceutical modeling. Front Comput Neurosci 14:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingham CS, Parent M, McIntyre CC (2021) Histology-driven model of the macaque motor hyperdirect pathway. Brain Struct Funct 226(7):2087–2097. https://doi.org/10.1007/s00429-021-02307-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Bokulić E, Medenica T, Knezović V, Štajduhar A, Almahariq F, Baković M, Judaš M, Sedmak G (2021) The stereological analysis and spatial distribution of neurons in the human subthalamic nucleus. Front Neuroana 15:749390. https://doi.org/10.3389/fnana.2021.749390

    Article  Google Scholar 

  • Borgognon S, Cottet J, Badoud S, Bloch J, Brunet JF, Rouiller EM (2020) Cortical projection from the premotor or primary motor cortex to the subthalamic nucleus in intact and parkinsonian adult macaque monkeys: a pilot tracing study. Front Neural Circuits 14:528993. https://doi.org/10.3389/fncir.2020.528993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bower KL, McIntyre CC (2020) Deep brain stimulation of terminating axons. Brain Stimul 13(6):1863–1870

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunenberg EJ, Moeskops P, Backes WH, Pollo C, Cammoun L, Vilanova A, Platel B (2012) Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PloS one 7(6):e39061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter MB (1976) Anatomical organization of the corpus striatum and related nuclei. In: Yahr MD (ed) The Basal Ganglia. Raven Press, New York

    Google Scholar 

  • Coudé D, Parent A, Parent M (2018) Single-axon tracing of the corticosubthalamic hyperdirect pathway in primates. Brain Struct Funct 223(9):3959–3973

    Article  PubMed  Google Scholar 

  • Coxon JP, Van Impe A, Wenderoth N, Swinnen SP (2012) Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance. J Neurosci 32(24):8401–8412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dagher A (2020) Mapping the hyper-direct circuitry of impulsivity. Brain 143(7):1973–1974

    Article  PubMed  Google Scholar 

  • Donahue CJ, Glasser MF, Preuss TM, Rilling JK, Van Essen DC (2018) Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proc Natl Acad Sci 115(22):E5183–E5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmi A, Antonini A, Macchi V, Porzionato A, De Caro R (2020) Anatomy and connectivity of the subthalamic nucleus in humans and non-human primates. Front Neuroanat 14:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Farokhniaee A, McIntyre CC (2019) Theoretical principles of deep brain stimulation induced synaptic suppression. Brain Stimul 12(6):1402–1409

    Article  PubMed  PubMed Central  Google Scholar 

  • Feger J, Bevan M, Crossman AR (1994) The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience 60(1):125–132

    Article  CAS  PubMed  Google Scholar 

  • Firmin L, Field P, Maier MA, Kraskov A, Kirkwood PA, Nakajima K, Glickstein M (2014) Axon diameters and conduction velocities in the macaque pyramidal tract. J Neurophysiol 112(6):1229–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19(8):1120–1136

    Article  PubMed  Google Scholar 

  • Gee L, Smith H, De La Cruz P, Campbell J, Fama C, Haller J, Pilitsis JG (2015) The influence of bilateral subthalamic nucleus deep brain stimulation on impulsivity and prepulse inhibition in Parkinson’s disease patients. Stereotact Funct Neurosurg 93(4):265–270

    Article  PubMed  Google Scholar 

  • Grill WM, Snyder AN, Miocinovic S (2004) Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport 15(7):1137–1140

    Article  PubMed  Google Scholar 

  • Gunalan K, McIntyre CC (2020) Biophysical reconstruction of the signal conduction underlying short-latency cortical evoked potentials generated by subthalamic deep brain stimulation. Clin Neurophysiol 131(2):542–547

    Article  PubMed  Google Scholar 

  • Gunalan K, Chaturvedi A, Howell B, Duchin Y, Lempka SF, Patriat R, McIntyre CC (2017) Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example. PloS one 12(4):e0176132

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunalan K, Howell B, McIntyre CC (2018) Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation. Neuroimage 172:263–277

    Article  PubMed  Google Scholar 

  • Haegelen C, Verin M, Broche BA, Prigent F, Jannin P, Gibaud B, Morandi X (2005) Does subthalamic nucleus stimulation affect the frontal limbic areas? A single-photon emission computed tomography study using a manual anatomical segmentation method. Surg Radiol Anat 27(5):389–394

    Article  CAS  PubMed  Google Scholar 

  • Hammond C, Yelnik J (1983) Intracellular labelling of rat subthalamic neurones with horseradish peroxidase: computer analysis of dendrites and characterization of axon arborization. Neuroscience 8(4):781–790

    Article  CAS  PubMed  Google Scholar 

  • Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445(3):238–255

    Article  PubMed  Google Scholar 

  • Hartmann-von Monakow K, Akert K, Künzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33(3):395–403

    Google Scholar 

  • Haynes WI, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci 33(11):4804–4814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herz DM, Tan H, Brittain JS, Fischer P, Cheeran B, Green AL, Brown P (2017) Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks. Elife 6:e21481

    Article  PubMed  PubMed Central  Google Scholar 

  • Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, Fox MD (2017) Connectivity predicts deep brain stimulation outcome in P arkinson disease. Ann Neurol 82(1):67–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Howell B, Isbaine F, Willie JT, Opri E, Gross RE, De Hemptinne C, Miocinovic S (2021) Image-based biophysical modeling predicts cortical potentials evoked with subthalamic deep brain stimulation. Brain Stimul 14(3):549–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwamuro H, Tachibana Y, Ugawa Y, Saito N, Nambu A (2017) Information processing from the motor cortices to the subthalamic nucleus and globus pallidus and their somatotopic organizations revealed electrophysiologically in monkeys. Eur J Neurosci 46(11):2684–2701

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahanshahi M, Obeso I, Rothwell JC, Obeso JA (2015) A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nat Rev Neurosci 16(12):719–732

    Article  CAS  PubMed  Google Scholar 

  • Johnson LA, Wang J, Nebeck SD, Zhang J, Johnson MD, Vitek JL (2020) Direct activation of primary motor cortex during subthalamic but not pallidal deep brain stimulation. J Neurosci 40(10):2166–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorge A, Lipski WJ, Wang D, Crammond DJ, Turner RS, Richardson RM (2022) Hyperdirect connectivity of opercular speech network to the subthalamic nucleus. Cell reports 38(10):110477

    Article  CAS  PubMed  Google Scholar 

  • Knight EJ, Testini P, Min HK, Gibson WS, Gorny KR, Favazza CP, Felmlee JP, Kim I, Welker KM, Clayton DA, Klassen BT, Chang SY, Lee KH (2015) Motor and nonmotor circuitry activation induced by subthalamic nucleus deep brain stimulation in patients with Parkinson disease: intraoperative functional magnetic resonance imaging for deep brain stimulation. Mayo Clin Proc 90(6):773–785. https://doi.org/10.1016/j.mayocp.2015.03.022

    Google Scholar 

  • Künzle H (1976) Thalamic projections from the precentral motor cortex in macaca fascicularis. Brain Res 105:253–267

    Article  PubMed  Google Scholar 

  • Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in macaca fascicularis. Brain Behav Evol 15:210–234

    Article  Google Scholar 

  • Kuriakose R, Saha U, Castillo G, Udupa K, Ni Z, Gunraj C, Chen R (2010) The nature and time course of cortical activation following subthalamic stimulation in Parkinson’s disease. Cereb Cortex 20(8):1926–1936

    Article  PubMed  Google Scholar 

  • Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Frackowiak R (2012) Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 60(1):83–94

    Article  PubMed  Google Scholar 

  • Lehman JF, Greenberg BD, McIntyre CC, Rasmussen SA, Haber SN (2011) Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J Neurosci 31(28):10392–10402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin PM (1936) The efferent fibers of the frontal lobe of the monkey, macaca mulatta. J Comp Neurol 63:369–419

    Article  Google Scholar 

  • Levin PM (1949) Efferent fibers. In: Bucy PC (ed) The precentral motor cortex. University of Illinois Press, Urbana, pp 133–148

    Google Scholar 

  • Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 125(6):1196–1209

    Article  PubMed  Google Scholar 

  • Li N, Baldermann JC, Kibleur A, Treu S, Akram H, Elias GJ, Horn A (2020) A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat Commun 11(1):1–12

    Google Scholar 

  • Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, Brown P (2011) Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain 134(2):359–374

    Article  PubMed  Google Scholar 

  • Mathai A, Smith Y (2011) The corticostriatal and corticosubthalamic pathways: two entries, one target. So what? Front Syst Neurosci 5:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathai A, Ma Y, Paré JF, Villalba RM, Wichmann T, Smith Y (2015) Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Brain 138(4):946–962

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntyre CC, Grill WM, Sherman DL, Thakor NV (2004) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91(4):1457–1469

    Article  PubMed  Google Scholar 

  • Mettler FA (1947) Extracortical connections of the primate frontal cerebral cortex. II Corticofugal Connections J Comp Neurol 86:119–165

    Article  CAS  Google Scholar 

  • Milardi D, Basile GA, Faskowitz J, Bertino S, Quartarone A, Anastasi G, Cacciola A (2022) Effects of diffusion signal modeling and segmentation approaches on subthalamic nucleus parcellation. NeuroImage 250:118959. https://doi.org/10.1016/j.neuroimage.2022.118959

    Article  PubMed  Google Scholar 

  • Milosevic L, Kalia SK, Hodaie M, Lozano AM, Popovic MR, Hutchison WD, Lankarany M (2021) A theoretical framework for the site-specific and frequency-dependent neuronal effects of deep brain stimulation. Brain Stimul 14(4):807–821

    Article  PubMed  Google Scholar 

  • Miocinovic S, de Hemptinne C, Chen W, Isbaine F, Willie JT, Ostrem JL, Starr PA (2018) Cortical potentials evoked by subthalamic stimulation demonstrate a short latency hyperdirect pathway in humans. J Neurosci 38(43):9129–9141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder MJ, Boekel W, Ratcliff R, Forstmann BU (2014) Cortico-subthalamic connection predicts individual differences in value-driven choice bias. Brain Struct Funct 219(4):1239–1249

    Article  PubMed  Google Scholar 

  • Nambu A (2005) A new approach to understand the pathophysiology of Parkinson’s disease. J Neurol 252(4):iv1–iv4

    PubMed  Google Scholar 

  • Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16(8):2671–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambu A, Tokuno H, Inase M, Takada M (1997) Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239(1):13–16

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’pathway. Neurosci Res 43(2):111–117

    Article  PubMed  Google Scholar 

  • Neumann WJ, Schroll H, de Almeida Marcelino AL, Horn A, Ewert S, Irmen F, Kühn AA (2018) Functional segregation of basal ganglia pathways in Parkinson’s disease. Brain 141(9):2655–2669

    PubMed  Google Scholar 

  • Nisino Y (1940) Zur Faserverbindung der lateralen Fläche der Groβhirnhemisphäre beim Affen, unter besonderer Berücksichtigung der corticalen extrapyramidalen Bahnen und der sogenannten Kleinhirnpyramide. Z Mikrosk Anat Forsch 47:401–440

    Google Scholar 

  • Oswal A, Cao C, Yeh CH, Neumann WJ, Gratwicke J, Akram H, Litvak V (2021) Neural signatures of hyperdirect pathway activity in Parkinson’s disease. Nat Commun 12(1):1–14

    Article  Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20(1):91–127

    Article  CAS  PubMed  Google Scholar 

  • Pasquereau B, Turner RS (2011) Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons. Cereb Cortex 21(6):1362–1378

    Article  PubMed  Google Scholar 

  • Petersen MV, Mlakar J, Haber SN, Parent M, Smith Y, Strick PL, Griswold MA, McIntyre CC (2019) Holographic reconstruction of axonal pathways in the human brain. Neuron 104(6):1056.e3–1064.e3. https://doi.org/10.1016/j.neuron.2019.09.030

  • Petras JM (1969) Some efferent connections of the motor and somatosensory cortex of simian primates and felid, canid and procyonid carnivores. Ann NY Acad Sci 167:469–505

    Article  Google Scholar 

  • Plantinga BR, Temel Y, Duchin Y, Uludağ K, Patriat R, Roebroeck A, Harel N (2018) Individualized parcellation of the subthalamic nucleus in patients with Parkinson’s disease with 7T MRI. Neuroimage 168:403–411

    Article  PubMed  Google Scholar 

  • Pote I, Torkamani M, Kefalopoulou ZM, Zrinzo L, Limousin-Dowsey P, Foltynie T, Jahanshahi M (2016) Subthalamic nucleus deep brain stimulation induces impulsive action when patients with Parkinson’s disease act under speed pressure. Exp Brain Res 234(7):1837–1848

    Article  PubMed  PubMed Central  Google Scholar 

  • Rattay F (1999) The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89(2):335–346

    Article  CAS  PubMed  Google Scholar 

  • Rohlfing T, Kroenke CD, Sullivan EV, Dubach MF, Bowden DM, Grant KA, Pfefferbaum A (2012) The INIA19 template and neuromaps atlas for primate brain image parcellation and spatial normalization. Front Neuroinform 6:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato F, Parent M, Levesque M, Parent A (2000) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424(1):142–152

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SL, Brocker DT, Swan BD, Turner DA, Grill WM (2020) Evoked potentials reveal neural circuits engaged by human deep brain stimulation. Brain Stimul 13(6):1706–1718

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoenemann PT, Sheehan MJ, Glotzer LD (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8(2):242–252

    Article  CAS  PubMed  Google Scholar 

  • Sestini S, di Luzio AS, Ammannati F, De Cristofaro MTR, Passeri A, Martini S, Pupi A (2002) Changes in regional cerebral blood flow caused by deep-brain stimulation of the subthalamic nucleus in Parkinson’s disease. J Nucl Med 43(6):725–732

    PubMed  Google Scholar 

  • Temiz G, Sébille SB, Francois C, Bardinet E, Karachi C (2020) The anatomo-functional organization of the hyperdirect cortical pathway to the subthalamic area using in vivo structural connectivity imaging in humans. Brain Struct Funct 225(2):551–565

    Article  PubMed  Google Scholar 

  • Tinkhauser G, Torrecillos F, Duclos Y, Tan H, Pogosyan A, Fischer P, Brown P (2018) Beta burst coupling across the motor circuit in Parkinson’s disease. Neurobiol Dis 117:217–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Uylings HB, van Eden CG (1991) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 85:31–62

    Article  Google Scholar 

  • Verhaart WJC, Kennard MA (1940) Corticofugal degeneration following thermocoagulation of areas 4, 6 and 4S in macaca mulatta. J Anat 74:239–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker HC, Huang H, Gonzalez CL, Bryant JE, Killen J, Cutter GR, Watts RL (2012) Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord 27(7):864–873

    Article  PubMed  PubMed Central  Google Scholar 

  • Wessel JR, Aron AR (2017) On the globality of motor suppression: unexpected events and their influence on behavior and cognition. Neuron 93(2):259–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yelnik J, Percheron G (1979) Subthalamic neurons in primates: a quantitative and comparative analysis. Neuroscience 4(11):1717–1743

    Article  CAS  PubMed  Google Scholar 

  • Yi G, Grill WM (2018) Frequency-dependent antidromic activation in thalamocortical relay neurons: effects of synaptic inputs. J Neural Eng 15(5):056001

    Article  PubMed  PubMed Central  Google Scholar 

  • Zavala B, Jang A, Trotta M, Lungu CI, Brown P, Zaghloul KA (2018) Cognitive control involves theta power within trials and beta power across trials in the prefrontal-subthalamic network. Brain 141(12):3361–3376

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (R01 NS105690).

Funding

National Institutes of Health (R01 NS105690).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CSB, MVP, MP, CCM; Methodology: CSB, CCM; Writing-original draft: CSB; Writing/Editing: CSB, CCM, MVP, MP; Funding acquisition: CCM; Resources: CCM.

Corresponding author

Correspondence to Cameron C. McIntyre.

Ethics declarations

Conflict of interest

CCM is a paid consultant for Boston Scientific Neuromodulation, receives royalties from Hologram Consultants, Neuros Medical, Qr8 Health, and is a shareholder in the following companies: Hologram Consultants, BrainDynamics, Surgical Information Sciences, CereGate, Autonomic Technologies, Cardionomic, Enspire DBS.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bingham, C.S., Petersen, M.V., Parent, M. et al. Evolving characterization of the human hyperdirect pathway. Brain Struct Funct 228, 353–365 (2023). https://doi.org/10.1007/s00429-023-02610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-023-02610-5

Keywords

Navigation