Skip to main content
Log in

How processing emotion affects language control in bilinguals

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Research has shown that several variables affect language control among bilingual speakers but the effect of affective processing remains unexplored. Chinese–English bilinguals participated in a novel prime-target language switching experiment in which they first judged the affective valence (i.e., positive or negative) of auditorily presented words and then named pictures with neutral emotional valence in either the same (non-switch trial) or different language (switch trial). Brain activity was monitored using functional magnetic resonance imaging (fMRI). The behavioral performance showed that the typical switch cost (i.e., the calculated difference between switch and non-switch trials) emerged after processing positive words but not after negative words. Brain imaging demonstrated that processing negative words immediately before non-switch picturing naming trials (but not for switch trials) increased activation in brain areas associated with domain-general cognitive control. The opposite patterns were found after processing positive words. These findings suggest that an (emotional) negative priming effect is induced by spontaneous exposure to negative words and that these priming effects may be triggered by reactive emotional processing and that they may interact with higher level cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed in this study are available in the OSF repository: Liu, H. (2022, October 10). How emotion affects language control. Retrieved from osf.io/rp3at.

References

  • Abutalebi J (2008) Neural aspects of second language representation and language control. Acta Physiol (Oxf) 128(3):466–478

    Google Scholar 

  • Abutalebi J, Green D (2007) Bilingual language production: the neurocognition of language representation and control. J Neurolinguistics 20(3):242–275

    Article  Google Scholar 

  • Abutalebi J, Green D (2016) Neuroimaging of language control in bilinguals: neural adaptation and reserve. Bilingualism Lang Cogn 19(4):689–698

    Article  Google Scholar 

  • Allan D (2004) Oxford placement test 2: test pack. Oxford University Press, Oxford

    Google Scholar 

  • Banks S, Eddy K, Angstadt M, Nathan P, Phan K (2007) Amygdala-frontal connectivity during emotion regulation. Soc Cogn Affect Neurosci 2(4):303–312

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbas H (1995) Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neurosci Biobehav Rev 19(3):499–510

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823

  • Baumeister R, Bratslavsky E, Finkenauer C, Vohs K (2001) Bad is stronger than good. Rev Gen Psychol 5(4):323–370

    Article  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Berken JA, Gracco VL, Chen JK, Klein D (2016) The timing of language learning shapes brain structure associated with articulation. Brain Struct Funct 221(7):3591–3600

    Article  PubMed  Google Scholar 

  • Bialystok E, Craik F, Grady C, Chau W, Ishii R, Gunji A, Pantev C (2005) Effect of bilingualism on cognitive control in the Simon task: evidence from MEG. Neuroimage 24(1):40–49

    Article  PubMed  Google Scholar 

  • Blanco-Elorrieta E, Pylkkänen L (2016) Bilingual language control in perception versus action: MEG reveals comprehension control mechanisms in anterior cingulate cortex and domain-general control of production in dorsolateral prefrontal cortex. J Neurosci 36(2):290–301

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanco-Elorrieta E, Pylkkänen L (2017) Bilingual language switching in the laboratory versus in the wild: the spatiotemporal dynamics of adaptive language control. J Neurosci 37(37):9022–9036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco-Elorrieta E, Emmorey K, Pylkkänen L (2018) Language switching decomposed through MEG and evidence from bimodal bilinguals. Proc Natl Acad Sci 115(39):9708–9713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohland JW, Guenther FH (2006) An fMRI investigation of syllable sequence production. Neuroimage 32(2):821–841

    Article  PubMed  Google Scholar 

  • Branzi F, Della Rosa P, Canini M, Costa A, Abutalebi J (2016) Language control in bilinguals: monitoring and response selection. Cereb Cortex 26(6):2367–2380

    Article  PubMed  Google Scholar 

  • Brown S, Laird AR, Pfordresher PQ, Thelen SM, Turkeltaub P, Liotti M (2009) The somatotopy of speech: phonation and articulation in the human motor cortex. Brain Cogn 70(1):31–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvo A, Bialystok E (2014) Independent effects of bilingualism and socioeconomic status on language ability and executive functioning. Cognition 130(3):278–288

    Article  PubMed  Google Scholar 

  • Canini M, Della Rosa PA, Catricalà E, Strijkers K, Branzi FM, Costa A, Abutalebi J (2016) Semantic interference and its control: a functional neuroimaging and connectivity study. Hum Brain Mapp 37(11):4179–4196

    Article  PubMed  PubMed Central  Google Scholar 

  • Carretie L, Ríos M, de la Gándara B, Tapia M, Albert J, López-Martín S, Alvarez-Linera J (2009) The striatum beyond reward: caudate responds intensely to unpleasant pictures. Neuroscience 164(4):1615–1622

    Article  CAS  PubMed  Google Scholar 

  • Chee MW, Weekes B, Lee KM, Soon CS, Schreiber A, Hoon JJ, Chee M (2000) Overlap and dissociation of semantic processing of Chinese characters, English words, and pictures: evidence from fMRI. Neuroimage 12(4):392–403

    Article  CAS  PubMed  Google Scholar 

  • Cohen A, Najolia G, Brown L, Minor K (2011) The state-trait disjunction of anhedonia in schizophrenia: potential affective, cognitive, and social-based mechanisms. Clin Psychol Rev 31(3):440–448

    Article  PubMed  Google Scholar 

  • Coull J, Nobre A, Frith C (2001) The noradrenergic α2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cereb Cortex 11(1):73–84

    Article  CAS  PubMed  Google Scholar 

  • Cousins KA, Ash S, Irwin DJ, Grossman M (2017) Dissociable substrates underlie the production of abstract and concrete nouns. Brain Lang 165:45–54

    Article  PubMed  Google Scholar 

  • Crinion J, Turner R, Grogan A, Hanakawa T, Noppeney U, Devlin J, Aso S, Urayama T, Urayama S, Fukuyama H, Stockton K, Usui K, Green D, Price C (2006) Language control in the bilingual brain. Science 312(5779):1537–1540

    Article  CAS  PubMed  Google Scholar 

  • Czapka S, Festman J, Schwieter JW (2022) The influence of peripheral emotional expressions on inhibitory control among children. Acta Physiol (Oxf) 223(103507):1–10

    Google Scholar 

  • D’Souza D, D’Souza H (2016) Bilingual language control mechanisms in anterior cingulate cortex and dorsolateral prefrontal cortex: a developmental perspective. J Neurosci 36(20):5434–5436

    Article  PubMed  PubMed Central  Google Scholar 

  • De Baene W, Duyck W, Brass M, Carreiras M (2015) Brain circuit for cognitive control is shared by task and language switching. J Cogn Neurosci 27(9):1752–1765

    Article  PubMed  Google Scholar 

  • De Bruin A, Roelofs A, Dijkstra T, FitzPatrick I (2014) Domain-general inhibition areas of the brain are involved in language switching: FMRI evidence from trilingual speakers. Neuroimage 90:348–359

    Article  PubMed  Google Scholar 

  • de Fockert JW, Mizon GA, D’Ubaldo M (2010) No negative priming without cognitive control. J Exp Psychol Hum Percept Perform 36(6):1333

    Article  PubMed  Google Scholar 

  • Declerck M, Grainger J, Koch I, Philipp A (2017) Is language control just a form of executive control? Evidence for overlapping processes in language switching and task switching. J Mem Lang 95:138–145

    Article  Google Scholar 

  • Dehaene S, Cohen L (2011) The unique role of the visual word form area in reading. Trends Cogn Sci 15(6):254–262

    Article  PubMed  Google Scholar 

  • DeLuca V, Rothman J, Bialystok E, Pliatsikas C (2019) Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proc Natl Acad Sci 116(15):7565–7574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18(1):193–222

    Article  CAS  PubMed  Google Scholar 

  • Deuse L, Rademacher L, Winkler L, Schultz R, Gründer G, Lammertz S (2016) Neural correlates of naturalistic social cognition: brain-behavior relationships in healthy adults. Soc Cogn Affect Neurosci 11(11):1741–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devinsky O, Morrell M, Vogt B (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(1):279–306

    Article  PubMed  Google Scholar 

  • Egner T, Hirsch J (2005) Where memory meets attention: neural substrates of negative priming. J Cogn Neurosci 17(11):1774–1784

    Article  PubMed  Google Scholar 

  • Elliott R (2003) Executive functions and their disorders: Imaging in clinical neuroscience. Br Med Bull 65(1):49–59

    Article  PubMed  Google Scholar 

  • Faul F, Erdfelder E, Lang A, Buchner A (2007) G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  • Filippi R, Karaminis T, Thomas M (2014) Language switching in bilingual production: empirical data and computational modelling. Bilingualism Lang Cogn 17(2):294–315

    Article  Google Scholar 

  • Fox E (1995) Negative priming from ignored distractors in visual selection: a review. Psychon Bull Rev 2(2):145–173

    Article  CAS  PubMed  Google Scholar 

  • Fox E (1996) Cross-language priming from ignored words: evidence for a common representational system in bilinguals. J Mem Lang 35(3):353–370

    Article  Google Scholar 

  • Frings C, Schneider K, Fox E (2015) The negative priming paradigm: an update and implications for selective attention. Psychon Bull Rev 22(6):1577–1597

    Article  PubMed  Google Scholar 

  • Garbin G, Costa A, Sanjuan A, Forn C, Rodriguez-Pujadas A, Ventura N, Belloch V, Hernandez M, Ávila C (2011) Neural bases of language switching in high and early proficient bilinguals. Brain Lang 119(3):129–135

    Article  CAS  PubMed  Google Scholar 

  • Green D (1998) Mental control of the bilingual lexico-semantic system. Bilingualism Lang Cogn 1(2):67–81

    Article  Google Scholar 

  • Hagoort P (2003) How the brain solves the binding problem for language: a neurocomputational model of syntactic processing. Neuroimage 20:S18–S29

    Article  PubMed  Google Scholar 

  • Hagoort P (2005) On Broca, brain, and binding: a new framework. Trends Cogn Sci 9(9):416–423

    Article  PubMed  Google Scholar 

  • Hagoort P (2009) On the of Syntax. Biol Found Origin Syntax 3:279

    Google Scholar 

  • Hagoort P (2013) MUC (memory, unification, control) and beyond. Front Psychol 4:416

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart S, Green S, Casp M, Belger A (2010) Emotional priming effects during Stroop task performance. Neuroimage 49(3):2662–2670

    Article  PubMed  Google Scholar 

  • Hartikainen K (2021) Emotion-attention interaction in the right hemisphere. Brain Sci 11(8):1006

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartikainen K, Ogawa K, Knight R (2012) Orbitofrontal cortex biases attention to emotional events. J Clin Exp Neuropsychol 34(6):588–597

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartwigsen G, Baumgaertner A, Price CJ, Koehnke M, Ulmer S, Siebner HR (2010) Phonological decisions require both the left and right supramarginal gyri. Proc Natl Acad Sci 107(38):16494–16499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwigsen G, Weigel A, Schuschan P, Siebner HR, Weise D, Classen J, Saur D (2016) Dissociating parieto-frontal networks for phonological and semantic word decisions: a condition-and-perturb TMS study. Cereb Cortex 26(6):2590–2601

    Article  PubMed  Google Scholar 

  • Hebb AO, Ojemann GA (2013) The thalamus and language revisited. Brain Lang 126(1):99–108

    Article  PubMed  Google Scholar 

  • Herlin B, Navarro V, Dupont S (2021) The temporal pole: From anatomy to function: a literature appraisal. J Chem Neuroanat 113:101925

    Article  PubMed  Google Scholar 

  • Hertrich I, Dietrich S, Ackermann H (2016) The role of the supplementary motor area for speech and language processing. Neurosci Biobehav Rev 68:602–610

    Article  PubMed  Google Scholar 

  • Hosoda C, Hanakawa T, Nariai T, Ohno K, Honda M (2012) Neural mechanisms of language switch. J Neurolinguistics 25(1):44–61

    Article  Google Scholar 

  • Houghton G, Tipper SP (1996) Inhibitory mechanisms of neural and cognitive control: applications to selective attention and sequential action. Brain Cogn 30(1):20–43

    Article  CAS  PubMed  Google Scholar 

  • Jiao L, Gao Y, Schwieter JW, Li L, Zhu M, Liu C (2022a) Control mechanisms in voluntary versus mandatory language switching: evidence from ERPs. Int J Psychophysiol 178:43–50

    Article  PubMed  Google Scholar 

  • Jiao L, Meng N, Wang Z, Schwieter JW, Liu C (2022b) Partially shared neural mechanisms of language control and executive control in bilinguals: meta-analytic comparisons of language and task switching studies. Neuropsychologia 172:108273

    Article  PubMed  Google Scholar 

  • Kanske P, Kotz S (2010) Modulation of early conflict processing: N200 responses to emotional words in a flanker task. Neuropsychologia 48(12):3661–3664

    Article  PubMed  Google Scholar 

  • Kanske P, Kotz S (2011a) Conflict processing is modulated by positive emotion: ERP data from a flanker task. Behav Brain Res 219(2):382–386

    Article  PubMed  Google Scholar 

  • Kanske P, Kotz S (2011b) Emotion speeds up conflict resolution: a new role for the ventral anterior cingulate cortex? Cereb Cortex 21(4):911–919

    Article  PubMed  Google Scholar 

  • Kawasaki H, Tsuchiya N, Kovach C, Nourski K, Oya H, Howard M, Adolphs R (2012) Processing of facial emotion in the human fusiform gyrus. J Cogn Neurosci 24(6):1358–1370

    Article  PubMed  Google Scholar 

  • Kazanas S, McLean J, Altarriba J (2019) Emotion and emotion concepts: processing and use in monolingual and bilingual speakers. In: Schwieter JW (ed) The handbook of the neuroscience of multilingualism. Wiley-Blackwell, New York, pp 313–334

    Chapter  Google Scholar 

  • Kensinger E, Schacter D (2008) Neural processes supporting young and older adults’ emotional memories. J Cogn Neurosci 20(7):1161–1173

    Article  PubMed  Google Scholar 

  • Kovács Á, Mehler J (2009) Cognitive gains in 7-month-old bilingual infants. Proc Natl Acad Sci 106(16):6556–6560

    Article  PubMed  PubMed Central  Google Scholar 

  • Krueger F, Fischer R, Heinecke A, Hagendorf H (2007) An fMRI investigation into the neural mechanisms of spatial attentional selection in a location-based negative priming task. Brain Res 1174:110–119

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova A, Brockhoff P, Christensen R (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(1):1–26

    Google Scholar 

  • Lavie N, Hirst A, De Fockert J, Viding E (2004) Load theory of selective attention and cognitive control. J Exp Psychol Gen 133(3):339

    Article  PubMed  Google Scholar 

  • Li P, Legault J, Litcofsky KA (2014) Neuroplasticity as a function of second language learning: anatomical changes in the human brain. Cortex 58:301–324

    Article  PubMed  Google Scholar 

  • Li B, Liu H, Pérez A, Xie N (2018) Cathodal transcranial direct current stimulation over right dorsolateral prefrontal cortex improves language control during language switching. Behav Brain Res 351:34–41

    Article  PubMed  Google Scholar 

  • Lobier M, Palva JM, Palva S (2018) High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention. Neuroimage 165:222–237

    Article  PubMed  Google Scholar 

  • Mannarelli D, Pauletti C, Grippo A, Amantini A, Augugliaro V, Currà A, Missori P, Locuratolo N, De Lucia M, Rinalduzzi S, Fattapposta F (2015) The role of the right dorsolateral prefrontal cortex in phasic alertness: evidence from a contingent negative variation and repetitive transcranial magnetic stimulation study. Neural Plast 2015:410785

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariën P, Ackermann H, Adamaszek M, Barwood C, Beaton A, Desmond J, De Witte E, Fawcett A, Hertrich I, Küper M, Leggio M, Marvel C, Molinari M, Murdoch B, Nicolson R, Schmahmann J, Stoodley C, Thürling M, Timmann D, Wouters E, Ziegler W (2014) Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum 13(3):386–410

    PubMed  PubMed Central  Google Scholar 

  • Mayr S, Buchner A (2007) Negative priming as a memory phenomenon. Z Psychol/j Psychol 215(1):35–51

    Google Scholar 

  • McLaren D, Ries M, Xu G, Johnson S (2012) A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage 61(4):1277–1286

    Article  PubMed  Google Scholar 

  • Mondino M, Thiffault F, Fecteau S (2015) Does non-invasive brain stimulation applied over the dorsolateral prefrontal cortex non-specifically influence mood and emotional processing in healthy individuals? Front Cell Neurosci 9:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Murdoch B, Whelan B (2007) Language disorders subsequent to left cerebellar lesions: a case for bilateral cerebellar involvement in language? Folia Phoniatr Logop 59(4):184–189

    Article  PubMed  Google Scholar 

  • Nakamura K, Kawashima R, Sugiura M, Kato T, Nakamura A, Hatano K, Nagumo S, Kubota K, Fukuda H, Ito K, Kojima S (2001) Neural substrates for recognition of familiar voices: a PET study. Neuropsychologia 39(10):1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Qiu P (2018) Chinese–English bilinguals’ language regulation elucidated by cross-language positive and negative priming. J Psychol Clin Psychiatry 9(6):594–609

    Article  Google Scholar 

  • Neumann E, McCloskey M, Felio A (1999) Cross-language positive priming disappears, negative priming does not: evidence for two sources of selective inhibition. Mem Cogn 27(6):1051–1063

    Article  CAS  Google Scholar 

  • Neumann E, Nkrumah I, Chen Z (2018) Second language proficiency effects on cross-language positive and negative priming in Twi-English bilinguals. J Clin Psychol Cogn Sci 2(1):8–16

    Google Scholar 

  • Nkrumah I, Neumann E (2018) Cross-language negative priming remains intact, while positive priming disappears: evidence for two sources of selective inhibition. J Cogn Psychol 30(3):361–384

    Article  Google Scholar 

  • Norman D, Bobrow D (1975) On data-limited and resource-limited processes. Cogn Psychol 7(1):44–64

    Article  Google Scholar 

  • Nummenmaa L, Saarimäki H, Glerean E, Gotsopoulos A, Jääskeläinen I, Hari R, Sams M (2014) Emotional speech synchronizes brains across listeners and engages large-scale dynamic brain networks. Neuroimage 102:498–509

    Article  PubMed  Google Scholar 

  • Ocklenburg S, Güntürkün O (2018) The lateralized brain: the neuroscience and evolution of hemispheric asymmetries. Academic Press, London

    Google Scholar 

  • Olson DJ (2016) The gradient effect of context on language switching and lexical access in bilingual production. Appl Psycholinguist 37(3):725–756

    Article  Google Scholar 

  • Pardo J, Fox P, Raichle M (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349(6304):61–64

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim M, Chun M (2007) Concurrent working memory load can facilitate selective attention: evidence for specialized load. J Exp Psychol Hum Percept Perform 33(5):1062

    Article  PubMed  Google Scholar 

  • Pavlenko A (2008) Emotion and emotion-laden words in the bilingual lexicon. Bilingualism Lang Cogn 11(2):147–164

    Article  Google Scholar 

  • Pessoa L (2009) How do emotion and motivation direct executive control? Trends Cogn Sci 13(4):160–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Phelps E (2006) Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol 57:27–53

    Article  PubMed  Google Scholar 

  • Pool E, Brosch T, Delplanque S, Sander D (2016) Attentional bias for positive emotional stimuli: a meta-analytic investigation. Psychol Bull 142(1):79

    Article  PubMed  Google Scholar 

  • Posner M, Petersen S (1990) The attention system of the human brain. Annu Rev Neurosci 13(1):25–42

    Article  CAS  PubMed  Google Scholar 

  • Pourtois G, Spinelli L, Seeck M, Vuilleumier P (2010) Temporal precedence of emotion over attention modulations in the lateral amygdala: intracranial ERP evidence from a patient with temporal lobe epilepsy. Cogn Affect Behav Neurosci 10(1):83–93

    Article  PubMed  Google Scholar 

  • Prior A, Gollan T (2013) The elusive link between language control and executive control: a case of limited transfer. J Cogn Psychol 25(5):622–645

    Article  Google Scholar 

  • Reed A, Chan L, Mikels J (2014) Meta-analysis of the age-related positivity effect: age differences in preferences for positive over negative information. Psychol Aging 29(1):1–15

    Article  PubMed  Google Scholar 

  • Reverberi C, Kuhlen A, Abutalebi J, Greulich RS, Costa A, Seyed-Allaei S, Haynes JD (2015) Language control in bilinguals: intention to speak vs. execution of speech. Brain Lang 144:1–9

    Article  PubMed  Google Scholar 

  • Rodriguez-Fornells A, Rotte M, Heinze HJ, Nösselt T, Münte TF (2002) Brain potential and functional MRI evidence for how to handle two languages with one brain. Nature 415(6875):1026–1029

    Article  CAS  PubMed  Google Scholar 

  • Roediger H, Neely J (1982) Retrieval blocks in episodic and semantic memory. Can J Exp Psychol 36(2):213

    Article  Google Scholar 

  • Rushworth M, Buckley M, Behrens T, Walton M, Bannerman D (2007) Functional organization of the medial frontal cortex. Curr Opin Neurobiol 17(2):220–227

    Article  CAS  PubMed  Google Scholar 

  • Salvia E, Tissier C, Charron S, Herent P, Vidal J, Lion S, Cassotti M, Oppenheim C, Houdé O, Borst G, Cachia A (2019) The local properties of bold signal fluctuations at rest monitor inhibitory control training in adolescents. Dev Cogn Neurosci 38:100664

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Lopez A, Vanderhasselt M, Allaert J, Baeken C, De Raedt R (2018) Neurocognitive mechanisms behind emotional attention: Inverse effects of anodal tDCS over the left and right DLPFC on gaze disengagement from emotional faces. Cogn Affect Behav Neurosci 18(3):485–494

    Article  PubMed  Google Scholar 

  • Schwieter JW, Sunderman G (2008) Language switching in bilingual speech production: in search of the language-specific selection mechanism. Ment Lex 3(2):214–238

    Article  Google Scholar 

  • Shomstein S, Behrmann M (2006) Cortical systems mediating visual attention to both objects and spatial locations. Proc Natl Acad Sci 103(30):11387–11392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snodgrass J, Vanderwart M (1980) A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J Exp Psychol Hum Learn Mem 6(2):174

    Article  CAS  Google Scholar 

  • Snowden J, Thompson J, Neary D (2004) Knowledge of famous faces and names in semantic dementia. Brain 127(4):860–872

    Article  CAS  PubMed  Google Scholar 

  • Stoeckel LE, Kim J, Weller RE, Cox JE, Cook EW III, Horwitz B (2009) Effective connectivity of a reward network in obese women. Brain Res Bull 79(6):388–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulpizio S, Del Maschio N, Fedeli D, Abutalebi J (2020) Bilingual language processing: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 108:834–853

    Article  PubMed  Google Scholar 

  • Thierry G, Wu Y (2007) Brain potentials reveal unconscious translation during foreign-language comprehension. Proc Natl Acad Sci 104(30):12530–12535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillikainen L, Salli E, Korvenoja A, Aronen H (2006) A cluster mass permutation test with contextual enhancement for fMRI activation detection. Neuroimage 32(2):654–664

    Article  CAS  PubMed  Google Scholar 

  • Timmer K, Christoffels IK, Costa A (2019) On the flexibility of bilingual language control: the effect of language context. Bilingualism Lang Cogn 22(3):555–568

    Article  Google Scholar 

  • Tipper S (1985) The negative priming effect: inhibitory priming by ignored objects. Q J Exp Psychol 37(4):571–590

    Article  CAS  Google Scholar 

  • Tipper SP, Cranston M (1985) Selective attention and priming: Inhibitory and facilitatory effects of ignored primes. Q J Exp Psychol Sect A 37(4):591–611

    Article  CAS  Google Scholar 

  • Tipper S, Driver J (1988) Negative priming between pictures and words in a selective attention task: evidence for semantic processing of ignored stimuli. Mem Cognit 16(1):64–70

    Article  CAS  PubMed  Google Scholar 

  • Tipper S, Brehaut J, Driver J (1990) Selection of moving and static objects for the control of spatially directed action. J Exp Psychol Hum Learn Mem 16(3):492

    Article  CAS  Google Scholar 

  • Tipper SP, Weaver B, Houghton G (1994) Behavioural goals determine inhibitory mechanisms of selective attention. Q J Exp Psychol Sect A 47(4):809–840

    Article  Google Scholar 

  • Tomasi D, Ernst T, Caparelli EC, Chang L (2006) Common deactivation patterns during working memory and visual attention tasks: an intra-subject fMRI study at 4 Tesla. Hum Brain Mapp 27(8):694–705

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasi D, Goldstein RZ, Telang F, Maloney T, Alia-Klein N, Caparelli EC, Volkow ND (2007) Thalamo-cortical dysfunction in cocaine abusers: implications in attention and perception. Psych Res Neuroimag 155(3):189–201

    Article  CAS  Google Scholar 

  • Trimmel K et al (2018) Left temporal lobe language network connectivity in temporal lobe epilepsy. Brain 141(8):2406–2418

    Article  PubMed  Google Scholar 

  • Ungar L, Nestor P, Niznikiewicz M, Wible C, Kubicki M (2010) Color Stroop and negative priming in schizophrenia: an fMRI study. Psychiatry Res Neuroimaging 181(1):24–29

    Article  Google Scholar 

  • Utevsky AV, Smith DV, Huettel SA (2014) Precuneus is a functional core of the default-mode network. J Neurosci 34(3):932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Steenbergen H, Band G, Hommel B (2010) In the mood for adaptation: how affect regulates conflict-driven control. Psychol Sci 21(11):1629–1634

    Article  PubMed  Google Scholar 

  • Verreyt N, Woumans E, Vandelanotte D, Szmalec A, Duyck W (2016) The influence of language-switching experience on the bilingual executive control advantage. Bilingualism Lang Cogn 19(1):181–190

    Article  Google Scholar 

  • Vias C, Dick A (2017) Cerebellar contributions to language in typical and atypical development: a review. Dev Neuropsychol 42(6):404–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xue G, Chen C, Xue F, Dong Q (2007) Neural bases of asymmetric language switching in second-language learners: an ER-fMRI study. Neuroimage 35(2):862–870

    Article  PubMed  Google Scholar 

  • Weissberger GH, Gollan TH, Bondi MW, Clark LR, Wierenga CE (2015) Language and task switching in the bilingual brain: bilinguals are staying, not switching, experts. Neuropsychologia 66:193–203

    Article  PubMed  Google Scholar 

  • Woo C, Krishnan A, Wager T (2014) Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. Neuroimage 91:412–419

    Article  PubMed  Google Scholar 

  • Wu Y, Thierry G (2012) How reading in a second language protects your heart. J Neurosci 32(19):6485–6489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Zhang J (2019) Conflict processing is modulated by positive emotion word type in second language: an ERP study. J Psycholinguist Res 48(5):1203–1216

    Article  PubMed  Google Scholar 

  • Wu C, Zhang J (2020) Emotion word type should be incorporated in affective neurolinguistics: a commentary on Hinojosa, Moreno and Ferré (2019). Lang Cogn Neurosci 35(7):840–843

    Article  Google Scholar 

  • Wu J, Yang J, Chen M, Li S, Zhang Z, Kang C, Ding G, Guo T (2019) Brain network reconfiguration for language and domain-general cognitive control in bilinguals. Neuroimage 199:454–465

    Article  PubMed  Google Scholar 

  • Yan C, Wang X, Zuo X, Zang Y (2016) DPABI: data processing and analysis for (resting-state) brain imaging. Neuroinformatics 14(3):339–351

    Article  PubMed  Google Scholar 

  • Yaple Z, Arsalidou M (2017) Negative priming: a meta-analysis of fMRI studies. Exp Brain Res 235(11):3367–3374

    Article  PubMed  Google Scholar 

  • Yuan Q, Wu J, Zhang M, Zhang Z, Chen M, Ding G, Lu C, Guo T (2021) Patterns and networks of language control in bilingual language production. Brain Struct Funct 226(4):963–977

    Article  PubMed  Google Scholar 

  • Zeng Q, Qi S, Li M, Yao S, Ding C, Yang D (2017) Enhanced conflict-driven cognitive control by emotional arousal, not by valence. Cogn Emot 31(6):1083–1096

    Article  PubMed  Google Scholar 

  • Zhang Q, Yang Y (2003) The determiners of picture naming latency. Acta Psychol Sin 35(4):447–454

    Google Scholar 

  • Zhang J, Teo T, Wu C (2019) Emotion words modulate early conflict processing in a flanker task: differentiating emotion-label words and emotion-laden words in second language. Lang Speech 62(4):641–651

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from Youth Foundation of Social Science and Humanity, China Ministry of Education (21YJC190009), National Social Science Fund of China (21AYY014), Fundamental Research Funds for the Provincial Universities of Zhejiang, Youth Project of Liaoning Provincial Department of Education (LJKQZ2021089), the Dalian Science, Technology Star Fund of China (2020RQ055), Liaoning Social Science Planning Fund of China (L20AYY001), Research Project on Economic and Social Development of Liaoning Province (2023lslqnkt-054), and Liaoning Educational Science Planning Project (JG21DB306). We have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Contributions

HL, WL, and YW conceived and designed the study, led data interpretation, and prepared the manuscript. HL and WL led data management, data preprocessing, and execution of data analysis workflows. YW also contributed to the data analytic approach. HL, WL, JWS, and YW contributed to interpretation of the results and final manuscript preparation.

Corresponding author

Correspondence to Yan Jing Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, W., Schwieter, J.W. et al. How processing emotion affects language control in bilinguals. Brain Struct Funct 228, 635–649 (2023). https://doi.org/10.1007/s00429-022-02608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-022-02608-5

Keyword

Navigation