Skip to main content
Log in

Seasonal differences in the morphology and spine density of hippocampal neurons in wild ground squirrels

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Seasonally reproducing small mammals often undergo changes in brain anatomy throughout the year. Much of the research on this seasonal neuroplasticity has focused on changes in hippocampus volume and neurogenesis, with relatively little attention paid to neuronal morphology. Here, we test for sex, season and sex–season interaction effects on hippocampal neuron morphology and dendritic spine density in a seasonally reproducing rodent: Richardson’s ground squirrel (Urocitellus richardsonii). We quantified the morphology and spine densities of Golgi-stained pyramidal neurons and granule cells in the hippocampus and tested for differences between sexes and seasons with generalized linear models. Although we found no significant sex differences or sex–season interaction effects on any of our morphological measurements, there were significant differences in neuron morphology and spine density between breeding and non-breeding seasons. In the non-breeding season, ground squirrels had CA1 neurons with longer basal dendrites with more branches than in the breeding season. Non-breeding season animals also had higher apical and basal dendrite spine density in CA1 and CA3 neurons than breeding-season animals. Conversely, the spine densities of CA1 somata and granule cells were higher in breeding than in non-breeding season. These differences in neuron morphology and spine density between breeding and non-breeding seasons likely arise from a combination of activity levels, stress hormones, and photoperiod. Although the functional implications of seasonal changes in hippocampal neuron morphology and spine density are uncertain, our data suggest that ground squirrels may be a good model for understanding seasonal neuroplasticity in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used in the study are available upon request; please contact the corresponding author.

References

  • Amaral DG, Andersen P, O’Keefe J, Morris R (2007a) The hippocampus book. Oxford University Press

    Google Scholar 

  • Amaral DG, Scharfman HE, Lavenex P (2007b) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–790

    Article  PubMed  PubMed Central  Google Scholar 

  • Arendt T, Stieler J, Strijkstra AM, Hut RA, Rüdiger J, Van der Zee EA, Harkany T, Holzer M et al (2003) Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23:6972–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartkowska K, Djavadian RL, Taylor JR, Turlejski K (2008) Generation recruitment and death of brain cells throughout the life cycle of Sorex shrews (Lipotyphla). Eur J Neurosci 27:1710–1721

    Article  PubMed  Google Scholar 

  • Bartoń K (2019) MuMIn: Multi-modal inference. Model selection and model averaging based on information criteria (AICc and alike)

  • Bates D, Maechler M, Bolker B, Walker S, Haubo Bojesen Christensen R (2015) lme4: Linear mixed-effects models using Eigen and S4. R Package Version 1:1–7

    Google Scholar 

  • Bear MF, Connors BW, Paradiso MA (2007) Neuroscience: exploring the brain. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  • Bedrick EJ, Tsai C-L (1994) Model selection for multivariate regression in small samples. Biometrics 50:226–231

    Article  Google Scholar 

  • Bedrosian TA, Fonken LK, Walton JC, Haim A, Nelson RJ (2011) Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology 36:1062–1069

    Article  PubMed  Google Scholar 

  • Burger DK, Saucier JM, Iwaniuk AN, Saucier DM (2013) Seasonal and sex differences in the hippocampus of a wild rodent. Behav Brain Res 236:131–138

    Article  PubMed  Google Scholar 

  • Burger DK, Gulbrandsen T, Saucier D, Iwaniuk A (2014) The effects of season and sex on dentate gyrus size and neurogenesis in a wild rodent, Richardson’s ground squirrel (Urocitellus richardsonii). Neuroscience 272:240–251

    Article  CAS  PubMed  Google Scholar 

  • Cameron HA, Schoenfeld TJ (2018) Behavioral and structural adaptations to stress. Front Neuroendocrinol 49:106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campi KL, Jameson CE, Trainor BC (2013) Sexual dimorphism in the brain of the monogamous California mouse (Peromyscus californicus). Brain Behav Evol 81:236–249

    Article  PubMed  Google Scholar 

  • Chen Y, Rex CS, Rice CJ, Dubé CM, Gall CM, Lynch G, Baram TZ (2010) Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci 107:13123–13128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chklovskii DB, Mel BW, Svoboda K (2004) Cortical rewiring and information storage. Nature 431:782–788

    Article  CAS  PubMed  Google Scholar 

  • Clayton NS, Reboreda JC, Kacelnik A (1997) Seasonal changes of hippocampus volume in parasitic cowbirds. Behav Proc 41:237–243

    Article  CAS  Google Scholar 

  • Dark J, Spears N, Whaling CS, Wade GN, Meyer JS, Zucker I (1990) Long day lengths promote brain growth in meadow voles. Dev Brain Res 53:264–269

    Article  CAS  Google Scholar 

  • Dawson A, King VM, Bentley GE, Ball GF (2001) Photoperiodic control of seasonality in birds. J Biol Rhythms 16:365–380

    Article  CAS  PubMed  Google Scholar 

  • Dehnel A (1949) Studies on the genus Sorex L. Ann Univ M Curie-Sklod 4:18–102

    Google Scholar 

  • Delehanty B, Boonstra R (2012) The benefits of baseline glucocorticoid measurements: maximal cortisol production under baseline conditions revealed in male Richardon’s ground squirrels (Urocitellus richardsonii). Gen Comp Endocrinol 178:470–476

    Article  CAS  PubMed  Google Scholar 

  • Devoogd TJ, Nottebohm F (1981) Sex differences in dendritic morphology of a song control nucleus in the canary: a quantitative Golgi study. J Comp Neurol 196:309–316

    Article  CAS  PubMed  Google Scholar 

  • Eadie BD, Redila VA, Christie BR (2005) Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J Comp Neurol 486:39–47

    Article  PubMed  Google Scholar 

  • Eddy MC, Green JT (2017) Running wheel exercise reduces renewal of extinguished instrumental behavior and alters medial prefrontal cortex neurons in adolescent, but not adult, rats. Behav Neurosci 131:460

    Article  PubMed  PubMed Central  Google Scholar 

  • Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferbinteanu J, Ray C, McDonald RJ (2003) Both dorsal and ventral hippocampus contribute to spatial learning in Long-Evans rats. Neurosci Lett 345:131–135

    Article  CAS  PubMed  Google Scholar 

  • Fiala JC, Harris KM (1999) Dendrite structure. Dendrites 2:1–11

    Google Scholar 

  • Fonken LK, Kitsmiller E, Smale L, Nelson RJ (2012) Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J Biol Rhythms 27:319–327

    Article  PubMed  Google Scholar 

  • French SJ, Totterdell S (2002) Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. J Comp Neurol 446:151–165

    Article  PubMed  Google Scholar 

  • Galea LA, McEwen B (1999) Sex and seasonal changes in the rate of cell proliferation in the dentate gyrus of adult wild meadow voles. Neuroscience 89:955–964

    Article  CAS  PubMed  Google Scholar 

  • Galea LA, Kavaliers M, Ossenkopp K-P (1996) Sexually dimorphic spatial learning in meadow voles Microtus pennsylvanicus and deer mice Peromyscus maniculatus. J Exp Biol 199:195–200

    Article  CAS  PubMed  Google Scholar 

  • Galea LA, Perrot-Sinal TS, Kavaliers M, Ossenkopp K-P (1999) Relations of hippocampal volume and dentate gyrus width to gonadal hormone levels in male and female meadow voles. Brain Res 821:383–391

    Article  CAS  PubMed  Google Scholar 

  • Galea LA, Spritzer MD, Barker JM, Pawluski JL (2006) Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus 16:225–232

    Article  CAS  PubMed  Google Scholar 

  • Galea LA, Wainwright SR, Roes MM, Duarte-Guterman P, Chow C, Hamson DK (2013) Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications. J Neuroendocrinol 25:1039–1061

    Article  CAS  PubMed  Google Scholar 

  • Gaulin SJ, FitzGerald RW (1986) Sex differences in spatial ability: an evolutionary hypothesis and test. Am Nat 127:74–88

    Article  Google Scholar 

  • Gaulin SJ, Fitzgerald RW (1989) Sexual selection for spatial-learning ability. Anim Behav 37:322–331

    Article  Google Scholar 

  • Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods 79:1–4

    Article  CAS  PubMed  Google Scholar 

  • Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568:69–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould E, Woolley CS, Frankfurt M, McEwen BS (1990) Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 10:1286–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould E, Woolley CS, McEwen BS (1991) Adrenal steroids regulate postnatal development of the rat dentate gyrus: I. Effects of glucocorticoids on cell death. J Comp Neurol 313:479–485

    Article  CAS  PubMed  Google Scholar 

  • Hare JF, Ryan CP, Enright C, Gardiner LE, Skyner LJ, Berkvens CN, Anderson WG (2014) Validation of a radioimmunoassay-based fecal corticosteroid assay for Richardson’s ground squirrels Urocitellus richard-sonii and behavioural correlates of stress. Current Zoology 60:591–601

    Article  Google Scholar 

  • Huang L, DeVries GJ, Bittman EL (1998) Photoperiod regulates neuronal bromodeoxyuridine labeling in the brain of a seasonally breeding mammal. J Neurobiol 36:410–420

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa A, Nakamura S (2006) Ventral hippocampal neurons project axons simultaneously to the medial prefrontal cortex and amygdala in the rat. J Neurophysiol 96:2134–2138

    Article  PubMed  Google Scholar 

  • Jacobs LF (1996) Sexual selection and the brain. Trends Ecol Evol 11:82–86

    Article  CAS  PubMed  Google Scholar 

  • Jacobs LF, Gaulin S, Sherry DF, Hoffman GE (1990) Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. Proc Natl Acad Sci 87:6349–6352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joels M, Karst H, Krugers HJ, Lucassen PJ (2007) Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72–96

    Article  PubMed  Google Scholar 

  • Kabelik D, Weiss SL, Moore MC (2006) Steroid hormone mediation of limbic brain plasticity and aggression in free-living tree lizards, Urosaurus ornatus. Horm Behav 49:587–597

    Article  CAS  PubMed  Google Scholar 

  • Keeley R, Burger D, Saucier D, Iwaniuk A (2015) The size of non-hippocampal brain regions varies by season and sex in Richardson’s ground squirrel. Neuroscience 289:194–206

    Article  CAS  PubMed  Google Scholar 

  • Knafo S, Ariav G, Barkai E, Libersat F (2004) Olfactory learning-induced increase in spine density along the apical dendrites of CA1 hippocampal neurons. Hippocampus 14:819–825

    Article  PubMed  Google Scholar 

  • Kolb B, Gibb R, Gorny G (2003) Experience-dependent changes in dendritic arbor and spine density in neocortex vary qualitatively with age and sex. Neurobiol Learn Mem 79:1–10

    Article  PubMed  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RH (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82:1–26

    Article  Google Scholar 

  • Lavenex P, Steele MA, Jacobs LF (2000) The seasonal pattern of cell proliferation and neuron number in the dentate gyrus of wild adult eastern grey squirrels. Eur J Neurosci 12:643–648

    Article  CAS  PubMed  Google Scholar 

  • Lázaro J, Hertel M, Sherwood CC, Muturi M, Dechmann DK (2018) Profound seasonal changes in brain size and architecture in the common shrew. Brain Struct Funct 223:2823–2840

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesage L, Crête M, Huot J, Dumont A, Ouellet J-P (2000) Seasonal home range size and philopatry in two northern white-tailed deer populations. Can J Zool 78:1930–1940

    Article  Google Scholar 

  • Leuner B, Shors T (2013) Stress, anxiety, and dendritic spines: what are the connections? Neuroscience 251:108–119

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud R, Wainwright SR, Galea LA (2016) Sex hormones and adult hippocampal neurogenesis: regulation, implications, and potential mechanisms. Front Neuroendocrinol 41:129–152

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Téllez RI, Hernández-Torres E, Gamboa C, Flores G (2009) Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 63:794–804

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Magarinos AM (1997) Stress effects on morphology and function of the hippocampus. Ann N Y Acad Sci 821:271–284

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Coirini H, Westlind-Danielsson A, Frankfurt M, Gould E, Schumacher M, Woolley C (1991) Steroid hormones as mediators of neural plasticity. J Steroid Biochem Mol Biol 39:223–232

    Article  CAS  PubMed  Google Scholar 

  • Megías M, Emri Z, Freund T, Gulyas A (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527–540

    Article  PubMed  Google Scholar 

  • Michener GR (1978) Spatial relationships and social organization of adult Richardson’s ground squirrels. Can J Zool 57:125–139

    Article  Google Scholar 

  • Michener GR (1983) Spring emergence schedules and vernal behavior of Richardson’s ground squirrels: why do males emerge from hibernation before females? Behav Ecol Sociobiol 14:29–38

    Article  Google Scholar 

  • Michener GR (1992) Sexual differences in over-winter torpor patterns of Richardson’s ground squirrels in natural hibernacula. Oecologia 89:397–406

    Article  PubMed  Google Scholar 

  • Michener GR (1998) Sexual differences in reproductive effort of Richardson’s ground squirrels. J Mammal 79:1–19

    Article  Google Scholar 

  • Michener GR (2002) Seasonal use of subterranean sleep and hibernation sites by adult female Richardson’s ground squirrels. J Mammal 83:999–1012

    Article  Google Scholar 

  • Michener GR, Locklear L (1990) Differential costs of reproductive effort for male and female Richardson’s ground squirrels. Ecology 71:855–868

    Article  Google Scholar 

  • Michener GR, McLean IG (1996) Reproductive behaviour and operational sex ratio in Richardson’s ground squirrels. Anim Behav 52:743–758

    Article  Google Scholar 

  • Moser MB, Trommald M, Andersen P (1994) An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of synapses. Proc Natl Acad Sci USA 91:12673–12675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller D, Toni N, Buchs P-A (2000) Spine changes associated with long-term potentiation. Hippocampus 10:596–604

    Article  CAS  PubMed  Google Scholar 

  • Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S (2016) Ventral CA1 neurons store social memory. Science 353(6307):1536–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popov V, Bocharova L (1992) Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons. Neuroscience 48:53–62

    Article  CAS  PubMed  Google Scholar 

  • Popov V, Bocharova L, Bragin A (1992) Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 48:45–51

    Article  CAS  PubMed  Google Scholar 

  • Popov V, Medvedev N, Patrushev I, Ignat’ev D, Morenkov E, Stewart M (2007) Reversible reduction in dendritic spines in CA1 of rat and ground squirrel subjected to hypothermia–normothermia in vivo: a three-dimensional electron microscope study. Neuroscience 149:549–560

    Article  CAS  PubMed  Google Scholar 

  • Prendergast BJ, Nelson RJ, Zucker I (2002) Mammalian seasonal rhythms: behavior and neuroendocrine substrates. In: Hormones, brain and behavior, pp 3–156

  • Pyter LM, Reader BF, Nelson RJ (2005) Short photoperiods impair spatial learning and alter hippocampal dendritic morphology in adult male white-footed mice (Peromyscus leucopus). J Neurosci 25:4521–4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

    Google Scholar 

  • Rothstein SI, Yokel DA, Fleischer RC (1986) Social dominance, mating and spacing systems, female fecundity, and vocal dialects in captive and free-ranging brown-headed cowbirds. In: Current ornithology pp 127–185

  • Rudy JW, Matus-Amat P (2005) The ventral hippocampus supports a memory representation of context and contextual fear conditioning: implications for a unitary function of the hippocampus. Behav Neurosci 119:154

    Article  PubMed  Google Scholar 

  • Ryan CP, Anderson WG, Gardiner LE, Hare JF (2012) Stress-induced sex ratios in ground squirrels: support for a mechanistic hypothesis. Behav Ecol 23:160–167

    Article  Google Scholar 

  • Sherry DF (1985) Food storage by birds and mammals. In: Advances in the study of behavior, vol 15. Elsevier, pp 153–188

  • Sherry DF (2006) Neuroecology. Annu Rev Psychol 57:167–197

    Article  PubMed  Google Scholar 

  • Shors TJ, Chua C, Falduto J (2001) Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J Neurosci 21:6292–6297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smulders T, Sasson A, DeVoogd T (1995) Seasonal variation in hippocampal volume in a food-storing bird, the black-capped chickadee. J Neurobiol 27:15–25

    Article  CAS  PubMed  Google Scholar 

  • Soler JE, Robison AJ, Núñez AA, Yan L (2018) Light modulates hippocampal function and spatial learning in a diurnal rodent species: a study using male nile grass rat (Arvicanthis niloticus). Hippocampus 28:189–200

    Article  CAS  PubMed  Google Scholar 

  • Spritzer MD, Meikle DB, Solomon NG (2005) Female choice based on male spatial ability and aggressiveness among meadow voles. Anim Behav 69:1121–1130

    Article  Google Scholar 

  • Spritzer MD, Panning AW, Engelman SM, Prince WT, Casler AE, Georgakas JE, Jaeger EC, Nelson LR et al (2017) Seasonal and sex differences in cell proliferation, neurogenesis, and cell death within the dentate gyrus of adult wild-caught meadow voles. Neuroscience 360:155–165

    Article  CAS  PubMed  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    Article  CAS  PubMed  Google Scholar 

  • Stewart MG, Davies HA, Sandi C, Kraev IV, Rogachevsky VV, Peddie CJ, Rodriguez JJ, Cordero MI et al (2005) Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience 131:43–54

    Article  CAS  PubMed  Google Scholar 

  • Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17:1017–1022

    Article  PubMed  PubMed Central  Google Scholar 

  • Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, Mattson MP (2009) Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 19:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strijkstra AM, Hut RA, de Wilde MC, Stieler J, Van der Zee EA (2003) Hippocampal synaptophysin immunoreactivity is reduced during natural hypothermia in ground squirrels. Neurosci Lett 344:29–32

    Article  CAS  PubMed  Google Scholar 

  • Team RStudio (2019) RStudio: Integrated Development for R. RStudio, Inc., Boston, 2015. https://wwwrstudio.com/products/rstudio

  • Tramontin AD, Brenowitz EA (2000) Seasonal plasticity in the adult brain. Trends Neurosci 23:251–258

    Article  CAS  PubMed  Google Scholar 

  • Tronel S, Fabre A, Charrier V, Oliet SHR, Gage FH, Abrous DN (2010) Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proc Natl Acad Sci USA 107:7963–7968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verwer RW, Meijer RJ, Van Uum HF, Witter MP (1997) Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex. Hippocampus 7:397–402

    Article  CAS  PubMed  Google Scholar 

  • von der Ohe C, Garner C, Darian-Smith C, Heller HC (2007) Synaptic protein dynamics in hibernation. J Neurosci 27:84–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walton JC, Haim A, Spieldenner JM, Nelson RJ (2012) Photoperiod alters fear responses and basolateral amygdala neuronal spine density in white-footed mice (Peromyscus leucopus). Behav Brain Res 233:345–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Walton JC, Aubrecht TG, Weil ZM, Leuner B, Nelson RJ (2014) Photoperiodic regulation of hippocampal neurogenesis in adult male white-footed mice (Peromyscus leucopus). Eur J Neurosci 40:2674–2679

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiler E (1992) Seasonal changes in adult mammalian brain weight. Naturwissenschaften 79:474–476

    Article  CAS  PubMed  Google Scholar 

  • Woolley CS, McEwen BS (1993) Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol 336:293–306

    Article  CAS  PubMed  Google Scholar 

  • Woolley CS, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231

    Article  CAS  PubMed  Google Scholar 

  • Workman JL, Bowers SL, Nelson RJ (2009) Enrichment and photoperiod interact to affect spatial learning and hippocampal dendritic morphology in white-footed mice (Peromyscus leucopus). Eur J Neurosci 29:161–170

    PubMed  Google Scholar 

  • Workman JL, Manny N, Walton JC, Nelson RJ (2011) Short day lengths alter stress and depressive-like responses, and hippocampal morphology in Siberian hamsters. Horm Behav 60:520–528

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Wilson CC, Haring JH (1997) Effects of neonatal serotonin depletion on the development of rat dentate granule cells. Dev Brain Res 98:177–184

    Article  CAS  Google Scholar 

  • Yaskin VA (1994) Variation in brain morphology of the common shrew. Adv Biol Shrews 18:155–161

    Google Scholar 

  • Yaskin VA (2011) Seasonal changes in hippocampus size and spatial behavior in mammals and birds. Biol Bull Rev 1(3):279–288

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Rob and Janice Sutherland and Doug Smith for access to their properties, the University of Lethbridge grounds staff for permission to traps squirrels on campus, Russell Hossain for assistance in using the vibratome and the Golgi staining method, Maurice Needham for assistance with microscopy, and David Logue for statistical advice. Funding for this study was provided by grants from the Natural Science and Engineering Research Council (NSERC) [214562]; and Canada Foundation for Innovation [grant numbers 30215, 33598] to ANI.

Funding

Support for this study was provided by grants from the Natural Science and Engineering Research Council (NSERC) [214562]; and Canada Foundation for Innovation [grant numbers 30215, 33598] to ANI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Brinkman.

Ethics declarations

Conflict of interest

All the authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Research involving animals/ethical approval

All the procedures outlined below adhered to the Canadian Council for Animal Care guidelines and were approved by the University of Lethbridge Animal Welfare Committee (Protocol #1502). Permits for collections and research were issued by the Alberta Department of Sustainable Resource Development (permit numbers: 55980, 55981, 53998, 53999, 18-226).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brinkman, B., Ngwenya, A., Fjordbotten, K. et al. Seasonal differences in the morphology and spine density of hippocampal neurons in wild ground squirrels. Brain Struct Funct 227, 2349–2365 (2022). https://doi.org/10.1007/s00429-022-02528-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-022-02528-4

Keywords

Navigation