Skip to main content
Log in

Functional individual variability development of the neonatal brain

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Individual variability in cognition and behavior results from the differences in brain structure and function that have already emerged before birth. However, little is known about individual variability in brain functional architecture at local level in neonates which is of great significance to explore owing to largely undeveloped long-range functional connectivity and segregated functions in early brain development. To address this, resting-state fMRI data of 163 neonates ranged from 32 to 45 postconceptional weeks (PCW) were used in this study, and various functional features including functional parcellation similarity, local brain activity and local functional connectivity were used to characterize individual functional variability. We observed significantly higher local functional individual variability in superior parietal, sensorimotor, and visual cortex, and lower variability in the frontal, insula and cingulate cortex relative to other regions within each hemisphere. The mean local functional individual variability significantly increased with age, and the age effect was found larger in brain regions such as the occipital, temporal, prefrontal and parietal cortex. Our findings promote the understanding of brain plasticity and regional differential maturation in the early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  • Batalle D, Edwards AD, O’Muircheartaigh J (2018) Annual research review: not just a small adult brain: understanding later neurodevelopment through imaging the neonatal brain. J Child Psychol Psychiatry 59(4):350–371

    Article  PubMed  Google Scholar 

  • Boerwinkle VL, Cediel EG, Mirea L, Williams K, Kerrigan JF, Lam S et al (2019) Network-targeted approach and postoperative resting-state functional magnetic resonance imaging are associated with seizure outcome. Ann Neurol 86(3):344–356

    Article  PubMed  Google Scholar 

  • Bouyssi-Kobar M, De Asis-Cruz J, Murnick J, Chang T, Limperopoulos C (2019) Altered functional brain network integration, segregation, and modularity in infants born very preterm at term-equivalent age. J Pediatr 213(13–21):e11

    Google Scholar 

  • Burkhalter A (1993) Development of forward and feedback connections between areas V1 and V2 of human visual cortex. Cereb Cortex 3(5):476–487

    Article  CAS  PubMed  Google Scholar 

  • Cao M, He Y, Dai Z, Liao X, Jeon T, Ouyang M et al (2017a) Early development of functional network segregation revealed by connectomic analysis of the preterm human brain. Cereb Cortex 27(3):1949–1963

    PubMed  Google Scholar 

  • Cao M, He Y, Dai Z, Liao X, Jeon T, Ouyang M et al (2017b) Early development of functional network segregation revealed by connectomic analysis of the preterm human brain. Cereb Cortex 27(3):1949–1963

    PubMed  Google Scholar 

  • Cao M, Huang H, He Y (2017c) Developmental connectomics from infancy through early childhood. Trends Neurosci 40(8):494–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craddock RC, James GA, Holtzheimer PE III, Hu XP, Mayberg HS (2012) A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33(8):1914–1928

    Article  PubMed  Google Scholar 

  • Doria V, Beckmann CF, Arichi T, Merchant N, Groppo M, Turkheimer FE et al (2010) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci 107(46):20015–20020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y et al (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28–38

    Article  CAS  PubMed  Google Scholar 

  • Fitzgibbon SP, Harrison SJ, Jenkinson M, Baxter L, Robinson EC, Bastiani M et al (2020) The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants. Neuroimage 223:117303

    Article  PubMed  Google Scholar 

  • Gao W, Elton A, Zhu H, Alcauter S, Smith JK, Gilmore JH, Lin W (2014) Intersubject variability of and genetic effects on the brain’s functional connectivity during infancy. J Neurosci 34(34):11288–11296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Alcauter S, Elton A, Hernandez-Castillo CR, Smith JK, Ramirez J, Lin W (2015) Functional network development during the first year: relative sequence and socioeconomic correlations. Cereb Cortex 25(9):2919–2928

    Article  PubMed  Google Scholar 

  • Geerligs L, Tsvetanov KA, Henson RN (2017) Challenges in measuring individual differences in functional connectivity using fMRI: the case of healthy aging. Hum Brain Mapp 38(8):4125–4156

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ et al (2010) White matter maturation reshapes structural connectivity in the late developing human brain. Proc Natl Acad Sci 107(44):19067–19072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29(6):671–682

    Article  PubMed  Google Scholar 

  • Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci 106(27):11376–11381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Shu N, Mishra V, Jeon T, Chalak L, Wang ZJ et al (2015) Development of human brain structural networks through infancy and childhood. Cereb Cortex 25(5):1389–1404

    Article  PubMed  Google Scholar 

  • Keunen K, Counsell SJ, Benders MJ (2017) The emergence of functional architecture during early brain development. Neuroimage 160:2–14

    Article  PubMed  Google Scholar 

  • Kostović I, Jovanov-Milošević N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Paper presented at the seminars in fetal and neonatal medicine

  • Kostović I, Judaš M (2006) Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol 48(5):388–393

    Article  PubMed  Google Scholar 

  • Liu W-C, Flax JF, Guise KG, Sukul V, Benasich AA (2008) Functional connectivity of the sensorimotor area in naturally sleeping infants. Brain Res 1223:42–49

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Tian L, Hu T, Jiang T, Zuo N (2021) Development of individual variability in brain functional connectivity and capability across the adult lifespan. Cereb Cortex 31:3925

    Article  PubMed  Google Scholar 

  • Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J et al (2018) The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 173:88–112

    Article  PubMed  Google Scholar 

  • Mueller S, Wang D, Fox MD, Yeo BT, Sepulcre J, Sabuncu MR et al (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77(3):586–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasilta O, Tuulari JJ, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J et al (2020) Resting-state networks of the neonate brain identified using independent component analysis. Dev Neurobiol 80(3–4):111–125

    Article  PubMed  Google Scholar 

  • Rakic P (1995) Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc Natl Acad Sci USA 92(25):11323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sepulcre J, Liu H, Talukdar T, Martincorena I, Yeo BT, Buckner RL (2010) The organization of local and distant functional connectivity in the human brain. PLoS Comput Biol 6(6):e1000808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sethian JA (1999) Fast marching methods. SIAM Rev 41(2):199–235

    Article  Google Scholar 

  • Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  • Shi F, Salzwedel AP, Lin W, Gilmore JH, Gao W (2018) Functional brain parcellations of the infant brain and the associated developmental trends. Cereb Cortex 28(4):1358–1368

    Article  PubMed  Google Scholar 

  • Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62(1):1–35

    Article  CAS  PubMed  Google Scholar 

  • Smyser CD, Snyder AZ, Neil JJ (2011) Functional connectivity MRI in infants: exploration of the functional organization of the developing brain. Neuroimage 56(3):1437–1452

    Article  PubMed  Google Scholar 

  • Smyser CD, Neil JJ (2015) Use of resting-state functional MRI to study brain development and injury in neonates. Paper presented at the Seminars in Perinatology

  • Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20(4):327–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoecklein S, Hilgendorff A, Li M, Förster K, Flemmer AW, Galiè F et al (2020) Variable functional connectivity architecture of the preterm human brain: impact of developmental cortical expansion and maturation. Proc Natl Acad Sci 117(2):1201–1206

    Article  CAS  PubMed  Google Scholar 

  • Thirion B, Varoquaux G, Dohmatob E, Poline J-B (2014) Which fMRI clustering gives good brain parcellations? Front Neurosci 8:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomason ME, Grove LE, Lozon TA Jr, Vila AM, Ye Y, Nye MJ et al (2015) Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero. Dev Cogn Neurosci 11:96–104

    Article  PubMed  Google Scholar 

  • Vértes PE, Bullmore ET (2015) Annual research review: growth connectomics–the organization and reorganization of brain networks during normal and abnormal development. J Child Psychol Psychiatry 56(3):299–320

    Article  PubMed  Google Scholar 

  • Wang D, Liu H (2014) Functional connectivity architecture of the human brain: not all the same. Neuroscientist 20(5):432–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Xu Y, Zhao T, Xu Z, He Y, Liao X (2021) Individual uniqueness in the neonatal functional connectome. Cereb Cortex 31:3701

    Article  PubMed  Google Scholar 

  • Xu Y, Cao M, Liao X, Xia M, Wang X, Jeon T et al (2019) Development and emergence of individual variability in the functional connectivity architecture of the preterm human brain. Cereb Cortex 29(10):4208–4222

    Article  PubMed  Google Scholar 

  • Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol

  • Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22(1):394–400

    Article  PubMed  Google Scholar 

  • Zang Y, He Y, Zhu C, Cao Q, Sui M-Q, Liang M et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29(2):83–91

    Article  PubMed  Google Scholar 

  • Zhang H, Shen D, Lin W (2019) Resting-state functional MRI studies on infant brains: a decade of gap-filling efforts. Neuroimage 185:664–684

    Article  PubMed  Google Scholar 

  • Zhao J, Tang C, Nie J (2020) Functional parcellation of individual cerebral cortex based on functional mri. Neuroinformatics 18(2):295–306

    Article  PubMed  Google Scholar 

  • Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo X-N, He Y, Betzel RF, Colcombe S, Sporns O, Milham MP (2017) Human connectomics across the life span. Trends Cogn Sci 21(1):32–45

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by Key Realm R&D Program of Guangdong Province (2019B030335001), NFSC (National Natural Science Foundation of China) (Grant No. 61403148). Neonatal data were provided by the developing Human Connectome Project, KCL-Imperial Oxford Consortium funded by the European Research Council under the European Union Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. [319456].

Funding

This project was supported by Key Realm R&D Program of Guangdong Province (2019B030335001), NFSC (National Natural Science Foundation of China) (Grant No. 61403148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Nie.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 132 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Huang, Z., Ou, W. et al. Functional individual variability development of the neonatal brain. Brain Struct Funct 227, 2181–2190 (2022). https://doi.org/10.1007/s00429-022-02516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-022-02516-8

Keywords

Navigation