Skip to main content
Log in

Prosomeric classification of retinorecipient centers: a new causal scenario

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The retina is known to target many superficial areas in the brain. These have always been studied under the tenets of the classic columnar brain model, which was not designed to produce causal explanations, being functionally oriented. This has led over the years to a remarkable absence of understanding or even hypothetical thinking about why the optic tract takes its precise course, why there are so many retinal targets (some of them at surprising sites), what mechanism places each one of them exactly at its standard position, which processes specify spatial aspects of retinotopy and differential physiological properties within the visual system, and so on, including questions about conserved and changing evolutionary aspects of the visual structures. The author posits that the origin of the current causally uninformative state of the field is the columnar model, which worked as a subliminal or cryptic dogma that disregards the molecular developmental advances accruing during the last 40 years, and in general distracts the attention of neuroscientists from causal approaches. There is now an alternative brain model, known as the prosomeric model, that does not have these problems. The author aims to show that once the data on retinal projections are mapped and analyzed within the prosomeric model the scenario changes drastically and multiple opportunities for formulating hypotheses for causal explanation of any aspects about the visual projections become apparent (emphasis is made on mouse and rabbit data, but any set of data on retinal projections in vertebrates can be used, as shown in some examples).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The original data are available as tif or jpeg files from the author by request.

References

  • Altman J, Bayer SA (1978) Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. J Comp Neurol 182:945–972

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1986) The development of the rat hypothalamus. Adv Anat Embryol Cell Biol 100:1–178

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1988) Development of the rat thalamus. I. Mosaic organization of the thalamic neuroepithelium. J Comp Neurol 275:346–377

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1995) Atlas of prenatal rat brain development. CRC Press Inc, Boca Raton

    Google Scholar 

  • Baier H, Wullimann MF (2021) Anatomy and function of retinorecipient arborization fields in zebrafish. J Comp Neurol 529:3454–3476

    Article  PubMed  Google Scholar 

  • Bergquist H, Källen B (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol 100:627–659

    Article  CAS  PubMed  Google Scholar 

  • Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubenstein JLR (1993) Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2 and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 13:3155–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bürgi SM, Bucher VM (1960) Markhältige Faserverbindungen im Hirnstamm der Katzen. Monograph Gesamtgebiet Neurol Psychiat 87:1–127

    Article  Google Scholar 

  • Burrill JD, Easter SS Jr (1994) Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio). J Comp Neurol 346:583–600

    Article  CAS  PubMed  Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy. Evolution and adaptation, 2nd edn. Wiley and Sons Inc., Hoboken

    Book  Google Scholar 

  • Canteras NS, Ribeiro-Barbosa ER, Goto M, Cipolla-Neto J, Swanson LW (2011) The retinohypothalamic tract: comparison of axonal projection patterns from four major targets. Brain Res Rev 65:150–183

    Article  PubMed  Google Scholar 

  • Clandinin TR, Feldheim DA (2009) Making a visual map: mechanisms and molecules. Curr Opin Neurobiol 19:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobos I, Shimamura K, Rubenstein JLR, Martínez S, Puelles L (2001) Fate map of the avian anterior forebrain at the 4-somite stage, based on the analysis of quail-chick chimeras. Dev Biol 239:46–67

    Article  CAS  PubMed  Google Scholar 

  • Coggeshall RE (1964) A study of diencephalic development in the albino rat. J Comp Neurol 122:241–269

    Article  CAS  PubMed  Google Scholar 

  • Cooper AM, Cowey A (1990) Development and retraction of a crossed retinal projection to the inferior colliculus in neonatal pigmented rats. Neuroscience 35:335–344

    Article  CAS  PubMed  Google Scholar 

  • Dávila JC, Guirado S, Puelles L (2000) Calcium-binding proteins in the diencephalon of the lizard Psammodromus algirus. J Comp Neurol 427:67–92

    Article  PubMed  Google Scholar 

  • Delogu A, Sellers K, Zagoraiou L, Bocianowska-Zbrog A, Mandal S, Guimera J, Rubenstein JLR, Sugden D, Jessell T, Lumsden A (2012) Subcortical visual shell nuclei targeted by ipRGCs develop from a Sox14+-GABAergic progenitor and require Sox14 to regulate daily activity rhythms. Neuron 75:648–662

    Article  CAS  PubMed  Google Scholar 

  • Di Bonito MA, Studer M, Puelles L (2017) Nuclear derivatives and axonal projections originating from rhombomere 4 in the mouse hindbrain. Brain Struct Funct 222:3509–3542. https://doi.org/10.1007/s00429-017-1416-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz C, Puelles L (2020) Developmental genes and malformations in the hypothalamus. Front Neuroanat 14:1–28

    Article  CAS  Google Scholar 

  • Easter SS Jr, Taylor JS (1989) The development of the Xenopus retinofugal pathway: optic fibers join a pre-existing tract. Development 107:553–573

    Article  PubMed  Google Scholar 

  • Ebbesson SOE (ed) (1983) Comparative neurology of the telencephalon. Plenum Press, New York

    Google Scholar 

  • Feldheim DA, Vanderhaeghen P, Hansen MJ, Frisén J, Lu Q, Barbacid M, Flanagan JG (1998) Topographic guidance labels in a sensory projection to the forebrain. Neuron 21:1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Ferran JL, Sánchez-Arrones L, Sandoval JE, Puelles L (2007) A model of early molecular regionalization in the chicken embryonic pretectum. J Comp Neurol 505:379–403

    Article  CAS  PubMed  Google Scholar 

  • Ferran JL, Sánchez-Arrones L, Bardet SM, Sandoval J, Martínez-de-la-Torre M, Puelles L (2008) Early pretectal gene expression pattern shows a conserved anteroposterior tripartition in mouse and chicken. Brain Res Bull 75:295–298

    Article  CAS  PubMed  Google Scholar 

  • Ferran JL, Puelles L, Rubenstein JLR (2015) Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus. Front Neuroanat. https://doi.org/10.3389/fnana.2015.00046 (In: Alvarez-Bolado, G., Grinevich, V., Puelles, L. (eds) Development of the Hypothalamus. Lausanne: Frontiers Media. doi: 10.3389/978-2-88919-634-0)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrán JL, Dutra de Oliveira E, Sánchez-Arrones L, Sandoval JE, Martínez-de-la-Torre M, Puelles L (2009) Genoarchitectonic profile of developing nuclear groups in the chicken pretectum. J Comp Neurol 517:405–451

    Article  PubMed  CAS  Google Scholar 

  • Gaillard F, Karten HJ, Sauve Y (2013) Retinorecipient areas in the diurnal murine rodent Arvicanthis niloticus: a disproportionally large superior colliculus. J Comp Neurol 521:1699–1726

    Article  CAS  PubMed  Google Scholar 

  • García-Calero E, Martínez-de-la-Torre M, Puelles L (2002) The avian griseum tectale: cytoarchitecture, NOS expression and neurogenesis. Brain Res Bull 57:353–358

    Article  PubMed  Google Scholar 

  • Garcia-Calero E, López-González L, Martínez-de-la-Torre M, Fan C-M, Luis Puelles L (2021) Sim1-expressing cells illuminate the origin and course of migration of the nucleus of the lateral olfactory tract in the mouse amygdala. Brain Res Funct. https://doi.org/10.1007/s00429-020-02197-1

    Article  Google Scholar 

  • González G, Puelles L, Medina L (2002) Organization of the mouse dorsal thalamus based on topology, calretinin immunostaining and gene expressions. Brain Res Bull 57:439–443

    Article  PubMed  Google Scholar 

  • Gordon L, Mansh M, Kinsman H, Morris AR (2010) Xenopus sonic hedgehog guides retinal axons along the optic tract. Dev Dyn 239:2921–2932

    Article  PubMed  PubMed Central  Google Scholar 

  • Gribnau AAM, Geijsberts LGM (1985) Morphogenesis of the brain in staged Rhesus monkey embryos. Adv Anat Embryol Cell Biol 91:1–69

    Article  CAS  PubMed  Google Scholar 

  • Herrick CJ (1910) The morphology of the forebrain in amphibia and reptilia. J Comp Neurol 20:413–547

    Google Scholar 

  • Herrick CJ (1933) Morphogenesis of the brain. J Morphol 54:233–258

    Article  Google Scholar 

  • Herrick CJ (1948) The brain of the Tiger Salamander, Amblystoma tigrinum. The University of Chicago Press, Chicago

    Google Scholar 

  • Hidalgo-Sánchez M, Martínez-de-la-Torre M, Alvarado-Mallart RM, Puelles L (2005) Distinct preisthmic domain defined by overlap of Otx2 and Pax2 expression domains in the chicken caudal midbrain. J Comp Neurol 483:17–29

    Article  PubMed  CAS  Google Scholar 

  • His W (1893) Vorschläge zur Eintheilung des Gehirns. Arch Anat Physiol Anat Abt 1893:172–180

    Google Scholar 

  • His W (1904) Die Entwicklung des Menschlichen Gehirns während der Ersten Monate. S.Hirzel Verlag, Leipzig

    Google Scholar 

  • Hochstetter F (1895) Über die Beziehung des Thalamus opticus zum Seitenventrikel det Grosshien hemispheren. Anat Anz 10

  • Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Ann Rev Neurosci 31:479–509

    Article  CAS  PubMed  Google Scholar 

  • Kuhlenbeck H (1930) Bemerckungen über den Zwischenhirnbauplan bei Säugetieren, insbesondere beim Menschen. Anat Anz 70:122–142

    Google Scholar 

  • Kuhlenbeck H (1932) Buchbesprechung zu Hesse R. Über die Abgrenzung des Gehirns. Anat Anz 75:124–127

    Google Scholar 

  • Kuhlenbeck H (1954) The human Diencephalon. Karger, Basel

    Book  Google Scholar 

  • Kuhlenbeck H (1973) The central nervous system of vertebrates, vol. 3, part II: overall morphological pattern. Karger, Basel

    Google Scholar 

  • Kuhlenbeck H (1977) The central nervous system of vertebrates, vol. 5, part II: derivatives of the Prosencephalon: Diencephalon and Telencephalon. Karger, Basel

    Google Scholar 

  • Li H, Wagner E, McCaffery P, Smith D, Andreadis A, Dräger UC (2000) A retinoic acid synthesizing enzyme in ventral retina and telencephalon of the embryonic mouse. Mech Dev 95:283–289

    Article  CAS  PubMed  Google Scholar 

  • Marín O, Blanco MJ, Nieto MA (2001) Differential expression of Eph receptors and ephrins correlates with the formation of topographic projections in primary and secondary visual circuits of the embryonic chick forebrain. Dev Biol 234:289–303

    Article  PubMed  CAS  Google Scholar 

  • Martersteck EM, Hirokawa KE, Evarts M, Bernard A, Duan X, Li Y, Ng L, Oh SW, Ouellette B, Royall JJ, Stoecklin M, Wang Q, Zeng H, Sanes JR, Harris JA (2017) Diverse central projection patterns of retinal ganglion cells. Cell Rep 18:2058–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-de-la-Torre M, Garda A-L, Puelles E, Puelles L (2002) Gbx2 expression in the late embryonic chick dorsal thalamus. Brain Res Bull 57:435–438

    Article  PubMed  Google Scholar 

  • Merchán P, Bardet SM, Puelles L, Ferran JL (2011) Comparison of pretectal genoarchitectonic pattern between quail and chicken embryos. Front Neuroanat 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Monavarfeshani A, Sabbagh U, Fox MA (2017) Not a one-trick pony: diverse connectivity and functions of the rodent lateral geniculate complex. Vis Neurosci 34:E012. https://doi.org/10.1017/S0952523817000098

    Article  PubMed  PubMed Central  Google Scholar 

  • Montgomery N, Fite KV (1989) Retinotopic organization of central optic projections in Rana pipiens. J Comp Neurol 283:526–540

    Article  CAS  PubMed  Google Scholar 

  • Morales-Delgado N, Merchan P, Bardet SM, Ferrán JL, Puelles L, Díaz C (2011) Topography of somatostatin gene expression relative to molecular progenitor domains during ontogeny of the mouse hypothalamus. Front Neuroanat. https://doi.org/10.3389/fnana.2011.00010

    Article  PubMed  PubMed Central  Google Scholar 

  • Morin LP, Studholme KM (2014) Retinofugal projections in the mouse. J Comp Neurol 522:3733–3753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morona R, Ferran JL, Puelles L, González A (2011) Embryonic genoarchitecture of pretectum in Xenopus laevis: a conserved pattern in tetrapods. J Comp Neurol 519:1024–1050

    Article  PubMed  Google Scholar 

  • Morona R, Ferran JL, Puelles L, González A (2017) Genoarchitectural analysis of developing cell groups in the pretectal region of Xenopus laevis. J Comp Neurol 525:715–752

    Article  CAS  PubMed  Google Scholar 

  • Nagalski A, Dabrowski M, Wegierski T, Puelles L, Kuznicki J, Wisniewska MB (2015) Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Struct Funct. https://doi.org/10.1007/s00429-015-1052-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuys R (2017) Principles of current vertebrate neuromorphology. Brain Behav Evol 90:117–130

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R, Puelles L (2016) Towards a new neuromorphology. Springer, Berlin (978-3-319-25692-4)

    Book  Google Scholar 

  • Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates, vol I, II, III. Springer, Berlin

    Book  Google Scholar 

  • Orr H (1887) Contribution to the embryology of the lizard. J Morphol 1:311–363 (plates XII–XVI)

    Article  Google Scholar 

  • Osterhout JA, Josten N, Yamada J, Pan F, Wu SW, Nguyen PL, Panagiotakos G, Inoue YU, Egusa SF, Volgyi B, Inoue T, Bloomfield SA, Barres BA, Berson DM, Feldheim DA, Huberman AD (2011) Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. Neuron 71:632–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmgren A (1921) Embryological and morphological studies on the midbrain and cerebellum of vertebrates. Acta Zool 2:1–94

    Article  Google Scholar 

  • Paxinos G, Franklin KBJ (2013) The mouse brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Pfeiffenberger C, Yamada J, Feldheim DA (2006) Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. J Neurosci 26:12873–12884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puelles L (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol 46:319–337

    Article  CAS  PubMed  Google Scholar 

  • Puelles L (2001) Thoughts on the development, structure, and evolution of the mammalian and avian telencephalic pallium. Philos Trans R Soc Ser B Biol Sci (lond) 356:1583–1598

    Article  CAS  Google Scholar 

  • Puelles L (2013) Plan of the developing vertebrate nervous system relating embryology to the adult nervous system (prosomere model, overview of brain organization). In: Rubenstein JLR, Rakic P (eds) Comprehensive developmental neuroscience: patterning and cell type specification in the developing CNS and PNS. Academic Press, Amsterdam, pp 187–209

    Chapter  Google Scholar 

  • Puelles L (2017) Role of secondary organizers in the evolution of forebrain development in vertebrates. In: Shepherd SV (ed) Handbook of evolutionary neuroscience. Blackwell-Wiley, Chichester, pp 350–387

    Google Scholar 

  • Puelles L (2018) Developmental studies of avian brain organization. Int J Dev Biol 62:207–224

    Article  PubMed  Google Scholar 

  • Puelles L (2019a) Survey of midbrain, diencephalon, and hypothalamus neuroanatomic terms whose prosomeric definition conflicts with columnar tradition. Front Neuroanat 13:20. https://doi.org/10.3389/fnana.2019.00020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Puelles L (2019b) Hess’s experiments on the diencephalon and hypothalamus in the light of modern neuromeric genoarchitectonics. In: Valavanis A, Borbély A (eds) Walter Rudolf Hess: Leben und Werk. Zurich, Klinisches Neurozentrum

    Google Scholar 

  • Puelles L, Ferran JL (2012) Concept of genoarchitecture and its genomic fundament. Front Neuroanat. https://doi.org/10.3389/fnana.2012.00047

    Article  PubMed  PubMed Central  Google Scholar 

  • Puelles L, Martinez S (2013) Patterning of the diencephalon. In: Rubenstein JLR, Rakic P (eds) Comprehensive developmental neuroscience: patterning and cell type specification in the developing CNS and PNS. Academic Press, Amsterdam, pp 151–172

    Chapter  Google Scholar 

  • Puelles L, Rubenstein JLR (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16:472–479

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Rubenstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Rubenstein JLR (2015) A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Front Neuroanat. https://doi.org/10.3389/fnana.2015.00027 (In: Alvarez-Bolado, G., Grinevich, V., Puelles, L., (eds) Development of the Hypothalamus. Lausanne: Frontiers Media. doi: 10.3389/978-2-88919-634-0)

    Article  PubMed  PubMed Central  Google Scholar 

  • Puelles L, Amat JA, Martínez de la Torre M (1987a) Segment-related, mosaic neurogenetic pattern in the forebrain and mesencephalon of early chick embryos. I. Topography of AChE-positive neuroblasts up to stage HH18. J Comp Neurol 266:147–268

    Article  Google Scholar 

  • Puelles L, Doménech-Ratto G, Martínez-de-la-Torre M (1987b) Location of the rostral end of the longitudinal brain axis: review of an old topic in the light of marking experiments on the closing rostral neuropore. J Morphol 194:163–171

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Milán FJ, Martínez-de-la-Torre M (1996) A segmental map of subdivisions in the diencephalon of the frog Rana perezi: acetylcholinesterase-histochemical observations. Brain Behav Evol 47:279–310

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Martínez-de-la-Torre M, Paxinos G, Watson C, Martínez S (2007) The chick brain in stereotaxic coordinates: an Atlas featuring neuromeric subdivisions and Mammalian homologies. Elsevier/Academic Press, San Diego

    Google Scholar 

  • Puelles L, Martinez-de-la-Torre M, Bardet S, Rubenstein JLR (2012a) Hypothalamus. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press/Elsevier, New York, pp 221–312

    Chapter  Google Scholar 

  • Puelles L, Watson C, Martinez-de-la-Torre M, Ferran JL (2012b) Diencephalon. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press/Elsevier, New York, pp 313–336

    Chapter  Google Scholar 

  • Puelles E, Martinez-de-la-Torre M, Watson C, Puelles L (2012c) Midbrain. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press/Elsevier, New York, pp 337–359

    Chapter  Google Scholar 

  • Puelles L, Fernández B, Martinez-de-la-Torre M (2015) Neuromeric landmarks in the rat midbrain, diencephalon, and hypothalamus, compared with acetylcholinesterase histochemistry. In: Paxinos G (ed) The rat nervous system, 4th edn. Academic Press/Elsevier, New York, pp 25–43

    Chapter  Google Scholar 

  • Puelles L, Martinez-de-la-Torre M, Martinez S, Watson C, Paxinos G (2019a) The chick brain in stereotaxic coordinates and alternate stains, 2nd edn. Academic Press, New York

    Google Scholar 

  • Puelles L, Martínez-Marin R, Melgarejo-Otalora P, Ayad A, Valavanis A, Ferran JL (2019b) Patterned vascularization of embryonic mouse forebrain and neuromeric topology of major human subarachnoidal arterial branches: prosomeric mapping. Front Neuroanat. https://doi.org/10.3389/fnana.2019.00059

    Article  PubMed  PubMed Central  Google Scholar 

  • Puelles L, Diaz C, Stühmer T, Ferran JL, Martínez-de la Torre M, Rubenstein JLR (2021) LacZ-reporter mapping of Dlx5/6 expression and genoarchitectural analysis of the postnatal mouse prethalamus. J Comp Neurol 529:367–420. https://doi.org/10.1002/cne.24952

    Article  CAS  PubMed  Google Scholar 

  • Ramon y Cajal S (1911) Histologie du Systeme Nerveux de l´Homme et des Vertebres, vol 2. CSIC, Madrid

    Google Scholar 

  • Redies C, Ast M, Nakagawa S, Takeichi M, Martínez-de-la-Torre M, Puelles L (2000) Morphologic fate of diencephalic prosomeres and their subdivisions revealed by mapping cadherin expression. J Comp Neurol 421:481–514

    Article  CAS  PubMed  Google Scholar 

  • Rendahl H (1924) Embryologische und morphologische Studien über das Zwischenhirn beim Huhn. Acata Zool 5:241–344

    Article  Google Scholar 

  • Rubenstein JLR, Martínez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580

    Article  CAS  PubMed  Google Scholar 

  • Saldaña E, Viñuela A, Marshall AF, Fitzpatrick DC, Aparicio MA (2007) The TLC: a novel auditory nucleus of the mammalian brain. J Neurosci 27:13108–13116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scalia F, Fite KV (1974) A retinotopic analysis of the central connections of the optic nerve in the frog. J Comp Neurol 158:455–477

    Article  CAS  PubMed  Google Scholar 

  • Striedter GF, Northcutt RG (2020) Brains through time: a natural history of vertebrates. Oxford University Press, Oxford

    Google Scholar 

  • Swanson LW (1992) Brain maps. Structure of the rat brain. Elsevier, Amsterdam

    Google Scholar 

  • Swanson LW (1998) Brain maps. Structure of the rat brain, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Swanson LW (2012) Brain architecture. Understanding the basic plan, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Taylor JSH (1991) The early development of the frog retinotectal projection. Dev Auppl 2:95–104

    Article  Google Scholar 

  • Tello JF (1923) Les différenciations neuronales dans l’ embryon de poulet pendant les quattre 1435 premiers jours de l’incubation. Trab Lab Invest Biol 21(1–94):1436

    Google Scholar 

  • Tello JF (1934) Les différenciations neurofibrillaires dans le prosencéphale de la souris de 4 a 15 1437 mm. Trab Lab Invest Biol 29:339–396

    Google Scholar 

  • Triplett JW, Feldheim DA (2012) Eph and ephrin signaling in the formation of topographic maps. Sem Cell Dev Biol 23:7–15

    Article  CAS  Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). Erg Anat Entwickl Gesch 41:1–88

    Google Scholar 

  • Von Gudden BA (1870) Über einen bisher nicht beschriebenen Nervenfaserstrang im Gehirne der Säugethiere und des Menschen. Arch Psychiat 2:364–366

    Article  Google Scholar 

  • Von Gudden BA (1880) Über den tractus peduncularis transversus. Archiv Psychiat 11:415–418

    Article  Google Scholar 

  • Von Kupffer K (1906) Die Morphogenie des Zentralnervensystems. In: Hertwig O (ed) Handbuch der Vergleichenden und Experimentellen Entwicklungslehre der Wirbelthiere, vol 2. Fischer, Jena, pp 1–119

    Google Scholar 

  • Watson C, Shimogori T, Puelles L (2017) Mouse FGF8-Cre lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol 525:2782–2799

    Article  CAS  PubMed  Google Scholar 

  • Wöhrn JC, Puelles L, Nakagawa S, Takeichi M, Redies C (1998) Cadherin expression in the retina and retinofugal pathways of the chicken embryo. J Comp Neurol 396:20–38

    Article  PubMed  Google Scholar 

  • Wulliman MF, Puelles L, Wicht H (1999) Early postembryonic neural development in the zebrafish: a 3-D reconstruction of forebrain proliferation zones shows their relation to prosomeres. Eur J Morphol 37:117–121

    Article  Google Scholar 

  • Wullimann MF, Puelles L (1999) Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains. Anat Embryol 329:329–348

    Article  Google Scholar 

  • Yonehara K, Ishikane H, Sakuta H, Shintani T, Nakamura-Yonehara K, Kamiji NL, Usui S, Noda M (2009) Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLoS One 4(1):e4320. https://doi.org/10.1371/journal.pone.0004320 (Epub 2009 Jan 29)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon M-Y, Puelles L, Redies C (2000) Formation of cadherin-expressing brain nuclei in diencephalic alar plate divisions. J Comp Neurol 421:461–480

    Article  CAS  PubMed  Google Scholar 

  • Ziehen T (1906) Die Morphogenie des Zentralnervensystems der Säugetiere. In: Hertwig O (ed) Handbuch der Vergleichenden und Experimentellen Entwicklungslehre der Wirbelthiere, vol 2. Fischer, Jena, Germany, pp 200–298

    Google Scholar 

Download references

Funding

The support of the Spanish Ministry of Economy and Competitiveness grant BFU2014-57516P (with European Community FEDER support), and a Seneca Foundation (Autonomous Community of Murcia) Excellency Research contract, reference: 19904/GERM/15; project name: Genoarchitectonic Brain Development and Applications to Neurodegenerative Diseases and Cancer (to L.P.), by Seneca Foundation (5672 Fundación Séneca) are acknowledged. University of Murcia, VAT: ESQ3018001B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Puelles.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to declare.

Research involving animals/ethical approval

All experimental protocols and handling, use, and care of laboratory animals were conducted in compliance with the current normative standards of the European Union (Directive 2010/63/EU), the Spanish Government (Royal Decree 1201/2005 and 53/2013; Law 32/107), and with the approval of the University of Murcia committee for animal experimental ethics (Nº A13170406).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puelles, L. Prosomeric classification of retinorecipient centers: a new causal scenario. Brain Struct Funct 227, 1171–1193 (2022). https://doi.org/10.1007/s00429-022-02461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-022-02461-6

Keywords

Navigation