Skip to main content
Log in

Β-endorphin-immunoreactive perikarya appear to receive innervation from NPY-immunoreactive fiber varicosities in the human hypothalamus

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Morphological and pharmacological studies indicate that hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons communicate with each other in rats and regulate a variety of hypothalamic and extrahypothalamic functions. Indeed, electron microscopic studies revealed NPY-immunoreactive (NPI-IR) synapses on β-endorphin-IR neurons in the hypothalamus. However, no such connections have been reported in humans. Here, we studied the putative NPY–β-endorphin associations with high-resolution light microscopic double-label immunocytochemistry in the human hypothalamus. The majority of β-endorphin-IR perikarya appear to be innervated by abutting NPY-IR fibers in the infundibulum/median eminence, receiving more than 6 contacts (38% of the counted neurons) or three to six contacts (42% of the counted neurons). The rest of the β-endorphin-IR neurons are lightly innervated by NPY fibers (14%, one–three contacts) or do not receive any detectable NPY-IR axon varicosities (6% of the counted neurons). Since β-endorphin is cleaved from the proopiomelanocortin (POMC) precursor, the NPY–β-endorphin connections also provide the foundation for NPY–α-MSH and NPY–ACTH connections and their subsequent physiology. The close anatomical connections between NPY-IR nerve terminals and β-endorphin-IR neurons reported herein may represent functional synapses and provide the foundation for NPY-stimulated β-endorphin release. By interacting with β-endorphin, NPY may have a more widespread regulatory capacity than acting alone on different neurotransmitter systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91:449–458

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1987) The hypothalamus of the human adult: chiasmatic region. Anat Embryol (berl) 175:315–330

    CAS  Google Scholar 

  • Broberger C, Johansen J, Johansson C, Schalling M, Hokfelt T (1998) The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci U S A 95:15043–15048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bugnon C, Bloch B, Lenys D, Gouget A, Fellmann D (1979) Comparative study of the neuronal populations containing beta-endorphin, corticotropin and dopamine in the arcuate nucleus of the rat hypothalamus. Neurosci Lett 14:43–48

    CAS  PubMed  Google Scholar 

  • Chronwall BM (1985) Anatomy and physiology of the neuroendocrine arcuate nucleus. Peptides 6(Suppl 2):1–11

    CAS  PubMed  Google Scholar 

  • Crown A, Clifton DK, Steiner RA (2007) Neuropeptide signaling in the integration of metabolism and reproduction. Neuroendocrinology 86:175–182

    CAS  PubMed  Google Scholar 

  • Csiffary A, Gorcs TJ, Palkovits M (1990) Neuropeptide Y innervation of ACTH-immunoreactive neurons in the arcuate nucleus of rats: a correlated light and electron microscopic double immunolabeling study. Brain Res 506:215–222

    CAS  PubMed  Google Scholar 

  • Deltondo J, Por I, Hu W et al (2008) Associations between the human growth hormone-releasing hormone- and neuropeptide-Y-immunoreactive systems in the human diencephalon: a possible morphological substrate of the impact of stress on growth. Neuroscience 153:1146–1152

    CAS  PubMed  Google Scholar 

  • Dierschke DJ (1985) Temperature changes suggestive of hot flushes in rhesus monkeys: preliminary observations. J Med Primatol 14:271–280

    CAS  PubMed  Google Scholar 

  • Dudas B, Merchenthaler I (2004) Close anatomical associations between beta-endorphin and luteinizing hormone-releasing hormone neuronal systems in the human diencephalon. Neuroscience 124:221–229

    CAS  PubMed  Google Scholar 

  • Dudas B, Merchenthaler I (2006) Three-dimensional representation of the neurotransmitter systems of the human hypothalamus: inputs of the gonadotrophin hormone-releasing hormone neuronal system. J Neuroendocrinol 18:79–95

    CAS  PubMed  Google Scholar 

  • Dudas B, Mihaly A, Merchenthaler I (2000) topography and associations of luteinizing hormone-releasing hormone and neuropeptide Y-immunoreactive neuronal systems in the human diencephalon. J Comp Neurol 427:593–603

    CAS  PubMed  Google Scholar 

  • Escobar CM, Krajewski SJ, Sandoval-Guzman T, Voytko ML, Rance NE (2004) Neuropeptide Y gene expression is increased in the hypothalamus of older women. J Clin Endocrinol Metab 89:2338–2343

    CAS  PubMed  Google Scholar 

  • Fu LY, Van Den Pol AN (2010) Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism. J Neurosci 30:10205–10219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuxe K, Tinner B, Caberlotto L, Bunnemann B, Agnati LF (1997) NPY Y1 receptor like immunoreactivity exists in a subpopulation of beta-endorphin immunoreactive nerve cells in the arcuate nucleus: a double immunolabelling analysis in the rat. Neurosci Lett 225:49–52

    CAS  PubMed  Google Scholar 

  • Gallyas F, Merchenthaler I (1988) Copper-H2O2 oxidation strikingly improves silver intensification of the nickel-diaminobenzidine (Ni-Dab) end-product of the peroxidase reaction. J Histochem Cytochem 36:807–810

    CAS  PubMed  Google Scholar 

  • Gallyas F, Gorcs T, Merchenthaler I (1982) High-grade intensification of the end-product of the diaminobenzidine reaction for peroxidase histochemistry. J Histochem Cytochem 30:183–184

    CAS  PubMed  Google Scholar 

  • Hahn TM, Breininger JF, Baskin DG, Schwartz MW (1998) Coexpression of AGRP and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1:271–272

    CAS  PubMed  Google Scholar 

  • Hill JW (2010) Gene expression and the control of food intake by hypothalamic POMC/Cart neurons. Open Neuroendocrinol J 3:21–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JW, Elias CF, Fukuda M et al (2010) Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab 11:286–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath TL, Naftolin F, Kalra SP, Leranth C (1992) Neuropeptide-Y innervation of beta-endorphin-containing cells in the rat mediobasal hypothalamus: a light and electron microscopic double immunostaining analysis. Endocrinology 131:2461–2467

    CAS  PubMed  Google Scholar 

  • Hrabovszky E, Sipos MT, Molnar CS et al (2012) Low degree of overlap between kisspeptin, neurokinin B, and dynorphin immunoreactivities in the infundibular nucleus of young male human subjects challenges the KNDy neuron concept. Endocrinology 153:4978–4989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama H, Takenoya F, Hirako S et al (2012) Neuronal circuits involving neuropeptide Y in hypothalamic arcuate nucleus-mediated feeding regulation. Neuropeptides 46:285–289

    CAS  PubMed  Google Scholar 

  • Kalra SP, Crowley WR (1992) Neuropeptide Y: a novel neuroendocrine peptide in the control of pituitary hormone secretion, and its relation to luteinizing hormone. Front Neuroendocrinol 13:1–46

    CAS  PubMed  Google Scholar 

  • Kalra SP, Allen LG, Sahu A, Kalra PS, Crowley WR (1988) Gonadal steroids and neuropeptide Y-opioid-LHRH axis: interactions and diversities. J Steroid Biochem 30:185–193

    CAS  PubMed  Google Scholar 

  • Kalra SP, Sahu A, Kalra PS, Crowley WR (1990) Hypothalamic neuropeptide Y: a circuit in the regulation of gonadotropin secretion and feeding behavior. Ann N Y Acad Sci 611:273–283

    CAS  PubMed  Google Scholar 

  • Khachaturian H, Lewis ME, Tsou K, Watson SJ (1985) Beta-endorphin, alpha-MSH and related peptides. In: Björklund A, Hökfelt T (eds) Gaba and neuropeptides in the CNS. Elsevier, Amsterdam, pp 216–272

    Google Scholar 

  • Klenke U, Constantin S, Wray S (2010) Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors. Endocrinology 151:2736–2746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko L, Rotoli G, Grignol G, Hu W, Merchenthaler I, Dudas B (2011) A putative morphological substrate of the catecholamine-influenced neuropeptide Y (NPY) release in the human hypothalamus. Neuropeptides 45:197–203

    CAS  PubMed  Google Scholar 

  • Li C, Chen P, Smith MS (1999) Morphological evidence for direct interaction between arcuate nucleus neuropeptide Y (NPY) neurons and gonadotropin-releasing hormone neurons and the possible involvement of NPY Y1 receptors. Endocrinology 140:5382–5390

    CAS  PubMed  Google Scholar 

  • Louis GW, Greenwald-Yarnell M, Phillips R, Coolen LM, Lehman MN, Myers MG Jr (2011) Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 152:2302–2310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maniam J, Morris MJ (2012) The link between stress and feeding behaviour. Neuropharmacology 63:97–110

    CAS  PubMed  Google Scholar 

  • Mcdonald J, Calka J (1994) Relationship between neuropeptide Y and luteinizing-hormone-releasing hormone immunoreactivities in the hypothalamus and preoptic region. Acta Anat (basel) 151:171–179

    CAS  Google Scholar 

  • Menyhert J, Wittmann G, Lechan RM, Keller E, Liposits Z, Fekete C (2007) Cocaine- and amphetamine-regulated transcript (Cart) is colocalized with the orexigenic neuropeptide Y and agouti-related protein and absent from the anorexigenic alpha-melanocyte-stimulating hormone neurons in the infundibular nucleus of the human hypothalamus. Endocrinology 148:4276–4281

    CAS  PubMed  Google Scholar 

  • Merchenthaler I, Rotoli G, Grignol G, Dudas B (2010) Intimate associations between the neuropeptide Y system and the galanin-immunoreactive neurons in the human diencephalon. Neuroscience 170:839–845

    CAS  PubMed  Google Scholar 

  • Morton GJ, Schwartz MW (2001) The NPY/AGRP neuron and energy homeostasis. Int J Obes Relat Metab Disord 25(Suppl 5):S56–S62

    CAS  PubMed  Google Scholar 

  • Olsen J, Peroski M, Kiczek M, Grignol G, Merchenthaler I, Dudas B (2014) Intimate associations between the endogenous opiate systems and the growth hormone-releasing hormone system in the human hypothalamus. Neuroscience 258:238–245

    CAS  PubMed  Google Scholar 

  • Pralong FP (2010) Insulin and NPY pathways and the control of GNRH function and puberty onset. Mol Cell Endocrinol 324:82–86

    CAS  PubMed  Google Scholar 

  • Quennell JH, Mulligan AC, Tups A et al (2009) Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology 150:2805–2812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reichmann F, Holzer P (2016) Neuropeptide Y: a stressful review. Neuropeptides 55:99–109

    CAS  PubMed  Google Scholar 

  • Roa J, Herbison AE (2012) Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice. Endocrinology 153:5587–5599

    CAS  PubMed  Google Scholar 

  • Roa J, Tena-Sempere M (2010) Energy balance and puberty onset: emerging role of central mTOR signaling. Trends Endocrinol Metab 21:519–528

    CAS  PubMed  Google Scholar 

  • Roseberry AG, Liu H, Jackson AC, Cai X, Friedman JM (2004) Neuropeptide Y-mediated inhibition of proopiomelanocortin neurons in the arcuate nucleus shows enhanced desensitization in Ob/Ob mice. Neuron 41(5):P711–P722

    Google Scholar 

  • Sahu A, Crowley WR, Kalra SP (1990) An opioid-neuropeptide-Y transmission line to luteinizing hormone (LH)-releasing hormone neurons: a role in the induction of LH surge. Endocrinology 126:876–883

    CAS  PubMed  Google Scholar 

  • Saper CB (1990) Hypothalamus. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 389–413

    Google Scholar 

  • Skrapits K, Borsay BE, Herczeg L et al (2014) Colocalization of cocaine-and amphetamine-regulated transcript with kisspeptin and neurokinin N in the human infundibular region. PLoS One 9:E103977

    PubMed  PubMed Central  Google Scholar 

  • Stincic TL, Grachev P, Bosch MA, Ronnekleiv OK, Kelly MJ (2018) Estradiol drives the anorexigenic activity of proopiomelanocortin neurons in female mice. Eneuro. https://doi.org/10.1523/ENEURO.0103-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  • Swaab DF (2003) The human hypothalamus: basic and clinical aspects. Part 1: nuclei of the human hypothalamus. Elsevier

    Google Scholar 

  • Thind KK, Goldsmith PC (1988) Infundibular gonadotropin-releasing hormone neurons are inhibited by direct opioid and autoregulatory synapses in Juvenile monkeys. Neuroendocrinology 47:203–216

    CAS  PubMed  Google Scholar 

  • True C, Takahashi D, Kirigiti M, Lidsley SR, Moctezuma C, Arik A, Smith MS, Kievit P, Grove KL (2017) Arcuate nucleus neuropeptide coexpression and connections to gonadotropin-releasing hormone neurons in the female rhesus macaque. J Neuroendocrinol. https://doi.org/10.1111/Jne.12491

    Article  PubMed  PubMed Central  Google Scholar 

  • Veening JG, Barendregt HP (2015) The effects of beta-endorphin: state change modification. Fluids Barriers CNS 12:3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wade GN, Jones JE (2004) Neuroendocrinology of nutritional infertility. Am J Physiol Regul Integr Comp Physiol 287:R1277–R1296

    CAS  PubMed  Google Scholar 

  • Yang Y, Atasoy D, Su HH, Sternson SM (2011) Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146:992–1003

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Merchenthaler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

The brains utilized in these studies were harvested at 12-h post-mortem period in accordance with the regulations of the Institutional Review Board of Lake Erie College of Osteopathic Medicine (LECOM). See materials and methods.

Informed consent

not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudas, B., Merchenthaler, I. Β-endorphin-immunoreactive perikarya appear to receive innervation from NPY-immunoreactive fiber varicosities in the human hypothalamus. Brain Struct Funct 227, 821–828 (2022). https://doi.org/10.1007/s00429-021-02416-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02416-3

Keywords

Navigation